Do you want to publish a course? Click here

INTEGRAL results on the electromagnetic counterparts of gravitational waves

116   0   0.0 ( 0 )
 Added by Sandro Mereghetti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thanks to its high orbit and a set of complementary detectors providing continuous coverage of the whole sky, the INTEGRAL satellite has unique capabilities for the identification and study of the electromagnetic radiation associated to gravitational waves signals and, more generally, for multi-messenger astrophysics. Here we briefly review the results obtained during the first two observing runs of the advanced LIGO/Virgo interferometers.



rate research

Read More

In the faint short gamma-ray burst sGRB 170817A followed by the gravitational waves (GWs) from a merger of two neutron stars (NSs) GW170817, the spectral peak energy is too high to explain only by canonical off-axis emission. We investigate off-axis appearance of an sGRB prompt emission scattered by a cocoon, which is produced through the jet-merger-ejecta interaction, with either sub-relativistic or mildly-relativistic velocities. We show that the observed properties of sGRB 170817A, in particular the high peak energy, can be consistently explained by the Thomson-scattered emission with a typical sGRB jet, together by its canonical off-axis emission, supporting that an NS-NS merger is the origin of sGRBs. The scattering occurs at $lesssim 10^{10}$--$10^{12},{rm cm}$ not far from the central engine, implying the photospheric or internal shock origin of the sGRB prompt emission. The boundary between the jet and cocoon is sharp, which could be probed by future observations of off-axis afterglows. The scattering model predicts a distribution of the spectral peak energy that is similar to the observed one but with a cutoff around $sim$ MeV energy, and its correlations with the luminosity, duration, and time lag from GWs, providing a way to distinguish it from alternative models.
Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole - neutron star candidates has highlighted the need for a better discrimination criterion to support this effort. At the moment, the low-latency gravitational-wave alerts contain preliminary information about the binary properties and, hence, on whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as well as the probability of a signal being a binary neutron star, a black hole - neutron star, a binary black hole or of terrestrial origin. In this work, we expand upon this approach to predict both the ejecta properties and provide contours of potential lightcurves for these events in order to improve follow-up observation strategy. The various sources of uncertainty are discussed, and we conclude that our ignorance about the ejecta composition and the insufficient constraint of the binary parameters, by the low-latency pipelines, represent the main limitations. To validate the method, we test our approach on real events from the second and third Advanced LIGO-Virgo observing runs.
The first observations by a worldwide network of advanced interferometric gravitational wave detectors offer a unique opportunity for the astronomical community. At design sensitivity, these facilities will be able to detect coalescing binary neutron stars to distances approaching 400 Mpc, and neutron star-black hole systems to 1 Gpc. Both of these sources are associated with gamma ray bursts which are known to emit across the entire electromagnetic spectrum. Gravitational wave detections provide the opportunity for multi-messenger observations, combining gravitational wave with electromagnetic, cosmic ray or neutrino observations. This review provides an overview of how Australian astronomical facilities and collaborations with the gravitational wave community can contribute to this new era of discovery, via contemporaneous follow-up observations from the radio to the optical and high energy. We discuss some of the frontier discoveries that will be made possible when this new window to the Universe is opened.
With the discovery of gravitational waves (GW), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multi-messenger follow-up strategies to GW detections, ultra-violet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using $u$-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m$_{u}rm (AB)approx 24$ to fully complement the aLIGO range and sky localisation. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30~cm could be capable of covering the aLIGO detection distance from $sim$60--100% for BNS events and $sim$40% for BHNS events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique dataset, that can act as an effective diagnostic to discriminate between models.
204 - M. Branchesi 2011
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved ground-based and space EM facilities observing the sky at optical, X-ray and radio wavelengths. The joint GW/EM observation study requires the development of specific image analysis procedures able to discriminate the possible EM counterpart of GW trigger from background events. The paper shows an overview of the EM follow-up program and the developing image analysis procedures as they are applied to data collected with TAROT and Zadko.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا