Do you want to publish a course? Click here

Magnetic and Superconducting Phase Diagram of Nb/Gd/Nb trilayers

207   0   0.0 ( 0 )
 Added by Yury Khaydukov N.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a study of the structural, magnetic and superconducting properties of Nb(25nm)/Gd($d_f$)/Nb(25nm) hybrid structures of a superconductor/ ferromagnet (S/F) type. The structural characterization of the samples, including careful determination of the layer thickness, was performed using neutron and X-ray scattering with the aid of depth sensitive mass-spectrometry. The magnetization of the samples was determined by SQUID magnetometry and polarized neutron reflectometry and the presence of magnetic ordering for all samples down to the thinnest Gd(0.8nm) layer was shown. The analysis of the neutron spin asymmetry allowed us to prove the absence of magnetically dead layers in junctions with Gd interlayer thickness larger than one monolayer. The measured dependence of the superconducting transition temperature $T_c(d_f)$ has a damped oscillatory behavior with well defined positions of the minimum at $d_f$=3nm and the following maximum at $d_f$=4nm; the behavior, which is in qualitative agreement with the prior work (J.S. Jiang et al, PRB 54, 6119). The analysis of the $T_c(d_f)$ dependence based on Usadel equations showed that the observed minimum at $d_f$=3nm can be described by the so called $0$ to $pi$ phase transition of highly transparent S/F interfaces with the superconducting correlation length $xi_f approx 4$nm in Gd. This penetration length is several times higher than for strong ferromagnets like Fe, Co or Ni, simplifying thus preparation of S/F structures with $d_f sim xi_f$ which are of topical interest in superconducting spintronics.



rate research

Read More

We have used spin-polarized neutron reflectometry to investigate the magnetization profile of superlattices composed of ferromagnetic Gd and superconducting Nb layers. We have observed a partial suppression of ferromagnetic (F) order of Gd layers in [Gd($d_F$)/Nb(25nm)]$_{12}$ superlattices below the superconducting (S) transition of the Nb layers. The amplitude of the suppression decreases with increasing $d_F$. By analyzing the neutron spin asymmetry we conclude that the observed effect has an electromagnetic origin - the proximity-coupled S layers screen out the external magnetic field and thus suppress the F response of the Gd layers inside the structure. Our investigation demonstrates the considerable influence of electromagnetic effects on the magnetic properties of S/F systems.
We have investigated CuNi/Nb/CuNi trilayers, as have been recently used as the core structure of a spin-valve like device [J. Y. Gu et al., Phys. Rev. Lett. 89, 267001 (2002)] to study the effect of magnetic configurations of the CuNi layers on the critical temperature, Tc, of the superconducting Nb. After reproducing a Tc shift of a few mK, we have gone on to explore the performance limits of the structure. The results showed the Tc shift we found to be quite close to the basic limits of this particular materials system. The ratio between the thickness and the coherence length of the superconductor and the interfacial transparency were the main features limiting the Tc shift.
Highly transmissive ballistic junctions are demonstrated between Nb and the two-dimensional electron gas formed at an InAs/AlSb heterojunction. A reproducible fabrication protocol is presented yielding high critical supercurrent values. Current-voltage characteristics were measured down to 0.4 K and the observed supercurrent behavior was analyzed within a ballistic model in the clean limit. This investigation allows us to demonstrate an intrinsic interface transmissivity approaching 90%. The reproducibility of the fabrication protocol makes it of interest for the experimental study of InAs-based superconductor-semiconductor hybrid devices.
We analyze the phase diagram associated with a pair of magnetic impurities trapped in a superconducting host. The natural interplay between Kondo screening, superconductivity and exchange interactions leads to a rich array of competing phases, whose transitions are characterized by discontinuous changes of the total spin. Our analysis is based on a combination of numerical renormalization group techniques as well as semi-classical analytics. In addition to the expected screened and unscreened phases, we observe a new molecular doublet phase where the impurity spins are only partially screened by a single extended quasiparticle. Direct signatures of the various Shiba molecule states can be observed via RF spectroscopy.
A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا