Do you want to publish a course? Click here

A search for Cyanopolyynes in L1157-B1

81   0   0.0 ( 0 )
 Added by Edgar Mendoza
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present here a systematic search for cyanopolyynes in the shock region L1157-B1 and its associated protostar L1157-mm in the framework of the Large Program Astrochemical Surveys At IRAM (ASAI), dedicated to chemical surveys of solar-type star forming regions with the IRAM 30m telescope. Observations of the millimeter windows between 72 and 272 GHz permitted the detection of HC$_3$N and its $^{13}$C isotopologues, and HC$_5$N (for the first time in a protostellar shock region). In the shock, analysis of the line profiles shows that the emission arises from the outflow cavities associated with L1157-B1 and L1157-B2. Molecular abundances and excitation conditions were obtained from analysis of the Spectral Line Energy Distributions under the assumption of Local Thermodynamical Equilibrium or using a radiative transfer code in the Large Velocity Gradient approximation. Towards L1157mm, the HC$_3$N emission arises from the cold envelope ($T_{rot}=10$ K) and a higher-excitation region ($T_{rot}$= $31$ K) of smaller extent around the protostar. We did not find any evidence of $^{13}$C or D fractionation enrichment towards L1157-B1. We obtain a relative abundance ratio HC$_3$N/HC$_5$N of 3.3 in the shocked gas. We find an increase by a factor of 30 of the HC$_3$N abundance between the envelope of L1157-mm and the shock region itself. Altogether, these results are consistent with a scenario in which the bulk of HC$_3$N was produced by means of gas phase reactions in the passage of the shock. This scenario is supported by the predictions of a parametric shock code coupled with the chemical model UCL_CHEM.



rate research

Read More

69 - B. Lefloch , G. Busquet , S. Viti 2021
HCN and its isomer HNC play an important role in molecular cloud chemistry and the formation of more complex molecules. We investigate here the impact of protostellar shocks on the HCN and HNC abundances from high-sensitivity IRAM 30m observations of the prototypical shock region L1157-B1 and the envelope of the associated Class 0 protostar, as a proxy for the pre-shock gas. The isotopologues H$^{12}$CN, HN$^{12}$C, H$^{13}$CN, HN$^{13}$C, HC$^{15}$N, H$^{15}$NC, DCN and DNC were all detected towards both regions. Abundances and excitation conditions were obtained from radiative transfer analysis of molecular line emission under the assumption of Local Thermodynamical Equilibrium. In the pre-shock gas, the abundances of the HCN and HNC isotopologues are similar to those encountered in dark clouds, with a HCN/HNC abundance ratio $approx 1$ for all isotopologues. A strong D-enrichment (D/H$approx 0.06$) is measured in the pre-shock gas. There is no evidence of $^{15}$N fractionation neither in the quiescent nor in the shocked gas. At the passage of the shock, the HCN and HNC abundances increase in the gas phase in different manners so that the HCN/HNC relative abundance ratio increases by a factor 20. The gas-grain chemical and shock model UCLCHEM allows us to reproduce the observed trends for a C-type shock with pre-shock density $n$(H)= $10^5$cm$^{-3}$ and shock velocity $V_s= 40$km/s. We conclude that the HCN/HNC variations across the shock are mainly caused by the sputtering of the grain mantle material in relation with the history of the grain ices.
We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the emission coupled with the HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5 cm-3) gas associated with the large (20-25 arcsec) cavities opened by the protostellar wind. We find a N2H+ column density of few 10^12 cm-2 corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 10^4 cm-3, and then further compressed and accelerated by the shock.
71 - G. Busquet , F. Fontani , S. Viti 2017
L1157-B1 is the brightest shocked region of the large-scale molecular outflow, considered the prototype of chemically rich outflows, being the ideal laboratory to study how shocks affect the molecular gas. Several deuterated molecules have been previously detected with the IRAM 30m, most of them formed on grain mantles and then released into the gas phase due to the shock. We aim to observationally investigate the role of the different chemical processes at work that lead to formation the of DCN and test the predictions of the chemical models for its formation. We performed high-angular resolution observations with NOEMA of the DCN(2-1) and H13CN(2-1) lines to compute the deuterated fraction, Dfrac(HCN). We detected emission of DCN(2-1) and H13CN(2-1) arising from L1157-B1 shock. Dfrac(HCN) is ~4x10$^{-3}$ and given the uncertainties, we did not find significant variations across the bow-shock. Contrary to HDCO, whose emission delineates the region of impact between the jet and the ambient material, DCN is more widespread and not limited to the impact region. This is consistent with the idea that gas-phase chemistry is playing a major role in the deuteration of HCN in the head of the bow-shock, where HDCO is undetected as it is a product of grain-surface chemistry. The spectra of DCN and H13CN match the spectral signature of the outflow cavity walls, suggesting that their emission result from shocked gas. The analysis of the time dependent gas-grain chemical model UCL-CHEM coupled with a C-type shock model shows that the observed Dfrac(HCN) is reached during the post-shock phase, matching the dynamical timescale of the shock. Our results indicate that the presence of DCN in L1157-B1 is a combination of gas-phase chemistry that produces the widespread DCN emission, dominating in the head of the bow-shock, and sputtering from grain mantles toward the jet impact region.
103 - B. Lefloch 2017
We report on a systematic search for oxygen-bearing Complex Organic Molecules (COMs) in the Solar-like protostellar shock region L1157-B1, as part of the IRAM Large Program Astrochemical Surveys At IRAM (ASAI). Several COMs are unambiguously detected, some for the first time, such as ketene H$_2$CCO, dimethyl ether (CH$_3$OCH$_3$) and glycolaldehyde (HCOCH$_2$OH), and others firmly confirmed, such as formic acid (HCOOH) and ethanol (C$_2$H$_5$OH). Thanks to the high sensitivity of the observations and full coverage of the 1, 2 and 3mm wavelength bands, we detected numerous (10--125) lines from each of the detected species. Based on a simple rotational diagram analysis, we derive the excitation conditions and the column densities of the detected COMs. Combining our new results with those previously obtained towards other protostellar objects, we found a good correlation between ethanol, methanol and glycolaldehyde. We discuss the implications of these results on the possible formation routes of ethanol and glycolaldehyde.
We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K), HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology and spectral profiles has shown that the highest velocity gas is confined in a few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall of the gas cavity excavated by the shock expansion. A large velocity gradient model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6 cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5 cm^-3 for the density of the high velocity bullets. The origin of the bullets is still uncertain: they could be the result of local instabilities produced by the interaction of the jet with the ambient medium or could be clump already present in the ambient medium that are excited and accelerated by the expanding outflow. The column densities of the observed species can be reproduced qualitatively by the presence in B1 of a C-type shock and only models where the gas reaches temperatures of at least 4000 K can reproduce the observed HC3N column density.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا