No Arabic abstract
Most of prior works optimize caching policies based on the following assumptions: 1) every user initiates request according to content popularity, 2) all users are with the same active level, and 3) users are uniformly located in the considered region. In practice, these assumptions are often not true. In this paper, we explore the benefit of optimizing caching policies for base stations by exploiting user preference considering the spatial locality and different active level of users. We obtain optimal caching policies, respectively minimizing the download delay averaged over all file requests and user locations in the network (namely network average delay), and minimizing the maximal weighted download delay averaged over the file requests and location of each user (namely maximal weighted user average delay), as well as minimizing the weighted sum of both. The analysis and simulation results show that exploiting heterogeneous user preference and active level can improve user fairness, and can also improve network performance when users are with spatial locality.
In this paper, we investigate the transmission delay of cache-aided broadcast networks with user cooperation. Novel coded caching schemes are proposed for both centralized and decentralized caching settings, by efficiently exploiting time and cache resources and creating parallel data delivery at the server and users. We derive a lower bound on the transmission delay and show that the proposed centralized coded caching scheme is emph{order-optimal} in the sense that it achieves a constant multiplicative gap within the lower bound. Our decentralized coded caching scheme is also order-optimal when each users cache size is larger than the threshold $N(1-sqrt[{K-1}]{ {1}/{(K+1)}})$ (approaching 0 as $Kto infty$), where $K$ is the total number of users and $N$ is the size of file library. Moreover, for both the centralized and decentralized caching settings, our schemes obtain an additional emph{cooperation gain} offered by user cooperation and an additional emph{parallel gain} offered by the parallel transmission among the server and users. It is shown that in order to reduce the transmission delay, the number of users parallelly sending signals should be appropriately chosen according to users cache size, and alway letting more users parallelly send information could cause high transmission delay.
In this paper, we consider the coded-caching broadcast network with user cooperation, where a server connects with multiple users and the users can cooperate with each other through a cooperation network. We propose a centralized coded caching scheme based on a new deterministic placement strategy and a parallel delivery strategy. It is shown that the new scheme optimally allocate the communication loads on the server and users, obtaining cooperation gain and parallel gain that greatly reduces the transmission delay. Furthermore, we show that the number of users who parallelly send information should decrease when the users caching size increases. In other words, letting more users parallelly send information could be harmful. Finally, we derive a constant multiplicative gap between the lower bound and upper bound on the transmission delay, which proves that our scheme is order optimal.
In this paper, a software-based simulator for the deployment of base station-equipped unmanned aerial vehicles (UAVs) in a cellular network is proposed. To this end, the Google Earth Engine platform and its included image processing functions are used to collect geospatial data and to identify obstacles that can disrupt the line-of-sight (LoS) communications between UAVs and ground users. Given such geographical information, three environment-aware optimal UAV deployment scenarios are investigated using the developed simulator. In the first scenario, the positions of UAVs are optimized such that the number of ground users covered by UAVs is maximized. In the second scenario, the minimum number of UAVs needed to provide full coverage for all ground users is determined. Finally, given the load requirements of the ground users, the total flight time (i.e., energy) that the UAVs need to completely serve the ground users is minimized. Simulation results using a real area of the Virginia Tech campus show that the proposed environment-aware drone deployment framework with Google Earth input significantly enhances the network performance in terms of coverage and energy consumption, compared to classical deployment approaches that do not exploit geographical information. In particular, the results show that the proposed approach yields a coverage enhancement by a factor of 2, and a 65% improvement in energy-efficiency. The results have also shown the existence of an optimal number of drones that leads to a maximum wireless coverage performance.
Band convergence is considered a clear benefit to thermoelectric performance because it increases the charge carrier concentration for a given Fermi level, which typically enhances charge conductivity while preserving the Seebeck coefficient. However, this advantage hinges on the assumption that interband scattering of carriers is weak or insignificant. With first-principles treatment of electron-phonon scattering in CaMg$_{2}$Sb$_{2}$-CaZn$_{2}$Sb$_{2}$ Zintl system and full Heusler Sr$_{2}$SbAu, we demonstrate that the benefit of band convergence can be intrinsically negated by interband scattering depending on the manner in which bands converge. In the Zintl alloy, band convergence does not improve weighted mobility or the density-of-states effective mass. We trace the underlying reason to the fact that the bands converge at one k-point, which induces strong interband scattering of both the deformation-potential and the polar-optical kinds. The case contrasts with band convergence at distant k-points (as in the full Heusler), which better preserves the single-band scattering behavior thereby successfully leading to improved performance. Therefore, we suggest that band convergence as thermoelectric design principle is best suited to cases in which it occurs at distant k-points.
In this paper the advantages provided by multicell processing of signals transmitted by mobile terminals (MTs) which are received via dedicated relay terminals (RTs) are studied. It is assumed that each RT is capable of full-duplex operation and receives the transmission of adjacent relay terminals. Focusing on intra-cell TDMA and non-fading channels, a simplified relay-aided uplink cellular model based on a model introduced by Wyner is considered. Assuming a nomadic application in which the RTs are oblivious to the MTs codebooks, a form of distributed compress-and-forward (CF) scheme with decoder side information is employed. The per-cell sum-rate of the CF scheme is derived and is given as a solution of a simple fixed point equation. This achievable rate reveals that the CF scheme is able to completely eliminate the inter-relay interference, and it approaches a ``cut-set-like upper bound for strong RTs transmission power. The CF rate is also shown to surpass the rate of an amplify-and-forward scheme via numerical calculations for a wide range of the system parameters.