Do you want to publish a course? Click here

Instance Map based Image Synthesis with a Denoising Generative Adversarial Network

104   0   0.0 ( 0 )
 Added by Ziqiang Zheng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Semantic layouts based Image synthesizing, which has benefited from the success of Generative Adversarial Network (GAN), has drawn much attention in these days. How to enhance the synthesis image equality while keeping the stochasticity of the GAN is still a challenge. We propose a novel denoising framework to handle this problem. The overlapped objects generation is another challenging task when synthesizing images from a semantic layout to a realistic RGB photo. To overcome this deficiency, we include a one-hot semantic label map to force the generator paying more attention on the overlapped objects generation. Furthermore, we improve the loss function of the discriminator by considering perturb loss and cascade layer loss to guide the generation process. We applied our methods on the Cityscapes, Facades and NYU datasets and demonstrate the image generation ability of our model.



rate research

Read More

Radiogenomic map linking image features and gene expression profiles is useful for noninvasively identifying molecular properties of a particular type of disease. Conventionally, such map is produced in three separate steps: 1) gene-clustering to metagenes, 2) image feature extraction, and 3) statistical correlation between metagenes and image features. Each step is independently performed and relies on arbitrary measurements. In this work, we investigate the potential of an end-to-end method fusing gene data with image features to generate synthetic image and learn radiogenomic map simultaneously. To achieve this goal, we develop a generative adversarial network (GAN) conditioned on both background images and gene expression profiles, synthesizing the corresponding image. Image and gene features are fused at different scales to ensure the realism and quality of the synthesized image. We tested our method on non-small cell lung cancer (NSCLC) dataset. Results demonstrate that the proposed method produces realistic synthetic images, and provides a promising way to find gene-image relationship in a holistic end-to-end manner.
This chapter reviews recent developments of generative adversarial networks (GAN)-based methods for medical and biomedical image synthesis tasks. These methods are classified into conditional GAN and Cycle-GAN according to the network architecture designs. For each category, a literature survey is given, which covers discussions of the network architecture designs, highlights important contributions and identifies specific challenges.
In this paper, we introduce a new method for generating an object image from text attributes on a desired location, when the base image is given. One step further to the existing studies on text-to-image generation mainly focusing on the objects appearance, the proposed method aims to generate an object image preserving the given background information, which is the first attempt in this field. To tackle the problem, we propose a multi-conditional GAN (MC-GAN) which controls both the object and background information jointly. As a core component of MC-GAN, we propose a synthesis block which disentangles the object and background information in the training stage. This block enables MC-GAN to generate a realistic object image with the desired background by controlling the amount of the background information from the given base image using the foreground information from the text attributes. From the experiments with Caltech-200 bird and Oxford-102 flower datasets, we show that our model is able to generate photo-realistic images with a resolution of 128 x 128. The source code of MC-GAN is released.
Given a grayscale photograph, the colorization system estimates a visually plausible colorful image. Conventional methods often use semantics to colorize grayscale images. However, in these methods, only classification semantic information is embedded, resulting in semantic confusion and color bleeding in the final colorized image. To address these issues, we propose a fully automatic Saliency Map-guided Colorization with Generative Adversarial Network (SCGAN) framework. It jointly predicts the colorization and saliency map to minimize semantic confusion and color bleeding in the colorized image. Since the global features from pre-trained VGG-16-Gray network are embedded to the colorization encoder, the proposed SCGAN can be trained with much less data than state-of-the-art methods to achieve perceptually reasonable colorization. In addition, we propose a novel saliency map-based guidance method. Branches of the colorization decoder are used to predict the saliency map as a proxy target. Moreover, two hierarchical discriminators are utilized for the generated colorization and saliency map, respectively, in order to strengthen visual perception performance. The proposed system is evaluated on ImageNet validation set. Experimental results show that SCGAN can generate more reasonable colorized images than state-of-the-art techniques.
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouche
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا