No Arabic abstract
Due to its exceptional lithium storage capacity silicon is considered as a promising candidate for anode material in lithium-ion batteries (LIBs). In the present work we demonstrate that methods of the soft X-ray emission spectroscopy (SXES) can be used as a powerful tool for the comprehensive analysis of the electronic and structural properties of lithium silicides Li$_{x}$Si forming in LIBs anode upon Si lithiation. On the basis of density functional theory (DFT) and molecular dynamics (MD) simulations it is shown that coordination of Si atoms in Li$_{x}$Si decreases with increase in Li concentration both for the crystalline and amorphous phases. In amorphous a-Li$_{x}$Si alloys Si tends to cluster forming Si-Si covalent bonds even at the high lithium concentration. It is demonstrated that the Si-L$_{2,3}$ emission bands of the crystalline and amorphous Li$_{x}$Si alloys show different spectral dependencies reflecting the process of disintegration of Si-Si network into Si clusters and chains of the different sizes upon Si lithiation. The Si-L$_{2,3}$ emission band of Li$_{x}$Si alloys become narrower and shifts towards higher energies with an increase in Li concentration. The shape of the emission band depends on the relative contribution of the X-ray radiation from the Si atoms having different coordination. This feature of the Si-L$_{2,3}$ spectra of Li$_{x}$Si alloys can be used for the detailed analysis of the Si lithiation process and LIBs anode structure identification.
Resonant inelastic X-ray scattering (RIXS) and X-ray absorption (XA) experiments at the iron L- and nitrogen K-edge are combined with high-level first principles restricted active space self-consistent field (RASSCF) calculations for a systematic investigation of the nature of the chemical bond in potassium ferrocyanide in aqueous solution. The atom- and site-specific RIXS excitations allow for direct observation of ligand-to-metal (Fe L-edge) and metal-to-ligand (N K-edge) charge transfer bands and thereby evidence for strong {sigma}-donation and {pi}-back-donation. The effects are identified by comparing experimental and simulated spectra related to both the unoccupied and occupied molecular orbitals in solution.
We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn $L_{2,3}$ white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At $L_3$ excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around $L_2$, and between $L_3$ and $L_2$, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-$d$ orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn $L_{2,3}$ region may be used as a sensitive probe of the local environment of Mn atoms.
We demonstrate that angle-resolved soft x-ray spectroscopy can resolve absorption by inequivalent oxygen sites and by different orbitals belonging to the same site in NaV2O5. By rotating the polarization direction, we see a dramatic change in the absorption spectra at the oxygen K edge. Our theory identifies the detailed composition of the spectra and predicts a correct energy-ordering of the orbitals of three inequivalent oxygen atoms. Because different orbitals dominate absorption spectra at different energies and angles, one can excite at a specific site and ``orbital. In contrast, absorption at the vanadium L edge does not show large changes when varying the polarization direction. The reason for this is that different excitation channels (involving different initial states for the excited electron) overlap in energy and vary in compensating ways, obscuring each channels sensitive polarization dependence.
The search and exploration of new materials not found in nature is one of modern trends in pure and applied chemistry. In the present work, we report on experimental and textit{ab initio} density-functional study of the high-pressure-synthesized series of compounds Mn$_{1-x}$(Co,Rh)$_x$Ge. These high-pressure phases remain metastable at normal conditions, therewith they preserve their inherent noncentrosymmetric B20-type structure and chiral magnetism. Of particular interest in these two isovalent systems is the comparative analysis of the effect of $3d$ (Co) and $4d$ (Rh) substitution for Mn, since the $3d$ orbitals are characterized by higher localization and electron interaction than the $4d$ orbitals. The behavior of Mn$_{1-x}$(Co,Rh)$_x$Ge systems is traced as the concentration changes in the range $0 leq x leq 1$. We applied a sensitive experimental and theoretical technique which allowed to refine the shape of the temperature dependencies of magnetic susceptibility $chi(T)$ and thereby provide a new and detailed magnetic phase diagram of Mn$_{1-x}$Co$_x$Ge. It is shown that both systems exhibit a helical magnetic ordering that very strongly depends on the composition $x$. However, the phase diagram of Mn$_{1-x}$Co$_x$Ge differs from that of Mn$_{1-x}$Rh$_x$Ge in that it is characterized by coexistence of two helices in particular regions of concentrations and temperatures.
By means of ab-initio calculations we investigate the optical properties of pure a-SiN$_x$ samples, with $x in [0.4, 1.8]$, and samples embedding silicon nanoclusters (NCs) of diameter $0.5 leq d leq 1.0$ nm. In the pure samples the optical absorption gap and the radiative recombination rate vary according to the concentration of Si-N bonds. In the presence of NCs the radiative rate of the samples is barely affected, indicating that the intense photoluminescence of experimental samples is mostly due to the matrix itself rather than to the NCs. Besides, we evidence an important role of Si-N-Si bonds at the NC/matrix interface in the observed photoluminescence trend.