Do you want to publish a course? Click here

Oscillating Entropy and Spin Precession in the Ensemble of Qubits Interacting with Thermal Systems

89   0   0.0 ( 0 )
 Added by Zain Saleem mr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simple model which allows us to explain the physical nature of the oscillating entropy. We consider an ensemble of qubits interacting with thermal two-level systems. The entropy of the qubits oscillates between zero and the value of entropy of the thermal systems. We show that the oscillations of the entropy can be clearly explained by the precession of the real or effective spins of the qubits.



rate research

Read More

The classical Second Law of Thermodynamics demands that an isolated system evolves with a non-diminishing entropy. This holds as well in quantum mechanics if the evolution of the energy-isolated system can be described by a unital quantum channel. At the same time, the entropy of a system evolving via a non-unital channel can, in principle, decrease. Here, we analyze the behavior of the entropy in the context of the H-theorem. As exemplary phenomena, we discuss the action of a Maxwell demon (MD) operating a qubit and the processes of heating and cooling in a two-qubit system. We further discuss how small initial correlations between a quantum system and a reservoir affect the increase in the entropy under the evolution of the quantum system.
Progress in the creation of large scale, artificial quantum coherent structures demands the investigation of their nonequilibrium dynamics when strong interactions, even between remote parts, are non-perturbative. Analysis of multiparticle quantum correlations in a large system in the presence of decoherence and external driving is especially topical. Still, scaling behaviour of dynamics and related emergent phenomena are not yet well understood. We investigate how the dynamics of a driven system of several quantum elements (e.g., qubits or Rydberg atoms) changes with increasing number of elements. Surprisingly, a two-element system exhibits chaotic behaviours. For larger system sizes a highly stochastic, far from equilibrium, {em hyperchaotic} regime emerges. Its complexity systematically scales with the size of the system, proportionally to the number of elements. Finally, we demonstrate that these chaotic dynamics can be efficiently controlled by a periodic driving field. The insights provided by our results indicate the possibility of a reduced description for the behaviour of a large quantum system in terms of the transitions between its qualitatively different dynamical regimes, which are controlled by a relatively small number of parameters, and may prove useful in the design, characterization and control of large artificial quantum structures.
Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent classical properties of a system (e.g. diffusivity, viscosity, compressibility) from a generic microscopic quantum Hamiltonian. Here, we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometer length scales. In particular, the combination of positional disorder and on-site random fields leads to diffusive dynamics that are Fickian yet non-Gaussian. Finally, by tuning the underlying parameters within the spin Hamiltonian via a combination of static and driven fields, we demonstrate direct control over the emergent spin diffusion coefficient. Our work opens the door to investigating hydrodynamics in many-body quantum spin systems.
140 - Wen-Long You , Yu-Li Dong 2010
We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.
Quantum metrology makes use of coherent superpositions to detect weak signals. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered by interactions between them. Using a dense ensemble of interacting electronic spins in diamond, we demonstrate a novel approach to quantum metrology. It is based on a new method of robust quantum control, which allows us to simultaneously eliminate the undesired effects associated with spin-spin interactions, disorder and control imperfections, enabling a five-fold enhancement in coherence time compared to conventional control sequences. Combined with optimal initialization and readout protocols, this allows us to break the limit for AC magnetic field sensing imposed by interactions, opening a promising avenue for the development of solid-state ensemble magnetometers with unprecedented sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا