Do you want to publish a course? Click here

Ion-exchange synthesis and superconductivity at 8.6 K of Na2Cr3As3 with quasi-one-dimensional crystal structure

79   0   0.0 ( 0 )
 Added by ZhiAn Ren Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new Cr-based quasi-one-dimensional superconductor Na2Cr3As3 was synthesized by an ion-exchange method in sodium naphthalenide solution. The crystals are thread-like and the structure was analyzed by X-ray diffraction with a noncentrosymmetric hexagonal space group P-6m2 (No. 187), in which the (Cr3As3)2- linear chains are separated by Na+ ions, and the refined lattice parameters are a = 9.239(2) {AA} and c = 4.209(6) {AA}. The measurements for electrical resistivity, magnetic susceptibility, and heat capacity reveal a superconducting transition with unconventional characteristic at the Tc of 8.6 K, which exceeds that of all previously reported Cr-based superconductors.



rate research

Read More

Recently a new family of Cr-based A2Cr3As3 (A = K, Rb, Cs) superconductors were reported, which own a rare quasi-one-dimensional (Q1D) crystal structure with infinite (Cr3As3)2- chains and exhibit intriguing superconducting characteristics possibly derived from spin-triplet electron pairing. The crystal structure of A2Cr3As3 is actually a slight variation of the hexagonal TlFe3Te3 prototype although they have different lattice symmetry. Here we report superconductivity in a 133-type KCr3As3 compound that belongs to the latter structure. The single crystals of KCr3As3 were prepared by the deintercalation of K ions from K2Cr3As3 crystals which were grown from a high-temperature solution growth method, and it owns a centrosymmetric lattice in contrast to the non-centrosymmetric K2Cr3As3. After annealing at a moderate temperature, the KCr3As3 crystals show bulk superconductivity at 5 K revealed by electrical resistivity, magnetic susceptibility and heat capacity measurements. The discovery of this KCr3As3 superconductor provides a different structural instance to study the exotic superconductivity in these Q1D Cr-based superconductors.
Here we report the discovery of the first ternary molybdenum pnictide based superconductor K2Mo3As3. Polycrystalline samples were synthesized by the conventional solid state reaction method. X-ray diffraction analysis reveals a quasi-one-dimensional hexagonal crystal structure with (Mo3As3)2- linear chains separated by K+ ions, similar as previously reported K2Cr3As3, with the space group of P-6m2 (No. 187) and the refined lattice parameters a = 10.145(5) {AA} and c = 4.453(8) {AA}. Electrical resistivity, magnetic susceptibility, and heat capacity measurements exhibit bulk superconductivity with the onset Tc at 10.4 K in K2Mo3As3 which is higher than the isostructural Cr-based superconductors. Being the same group VIB transition elements and with similar structural motifs, these Cr and Mo based superconductors may share some common underlying origins for the occurrence of superconductivity and need more investigations to uncover the electron pairing within a quasi-one-dimensional chain structure.
We report the discovery of bulk superconductivity (SC) at 6.1 K in a quasi-one-dimensional (Q1D) chromium pnictide K$_2$Cr$_3$As$_3$ which contains [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ double-walled subnano-tubes with face-sharing Cr$_{6/2}$ (As$_{6/2}$) octahedron linear chains in the inner (outer) wall. The material has a large electronic specific-heat coefficient of 70$sim$75 mJ K$^{-2}$ mol$^{-1}$, indicating significantly strong electron correlations. Signature of non-Fermi liquid behavior is shown by the linear temperature dependence of resistivity in a broad temperature range from 7 to 300 K. Unconventional SC is preliminarily manifested by the estimated upper critical field exceeding the Pauli limit by a factor of three to four. The title compound represents a rare example that possibly unconventional SC emerges in a Q1D system with strong electron correlations.
83 - Kang Zhao , Qing-Ge Mu , Tong Liu 2018
By replacing the alkali element in the newly discovered K2Mo3As3 superconductor, we successfully synthesized ternary molybdenum pnictides Rb2Mo3As3 and Cs2Mo3As3 through solid state reaction method. Powder X-ray diffraction analysis reveals the same quasi-one-dimensional (Q1D) hexagonal crystal structure and space group of P-6m2 (No. 187) as K2Mo3As3. The refined lattice parameters are a = 10.432 (1) {AA}, c = 4.4615 (6) {AA} for Rb2Mo3As3 and a = 10.7405 (6) {AA}, c = 4.4654 (5) {AA} for Cs2Mo3As3. Electrical resistivity and magnetic susceptibility characterizations exhibit the occurrence of superconductivity in both compounds with the onset Tc at 10.6 K and 11.5 K for Rb2Mo3As3 and Cs2Mo3As3 respectively, which exhibit weak negative chemical pressure effect in these A2Mo3As3 (A = K, Rb, Cs) superconductors contrary to the isostructural A2Cr3As3 superconductors. More interestingly, the Cs2Mo3As3 superconductor exhibits much higher upper critical field around 60 T at zero temperature. The discovery of these MoAs/CrAs-based superconductors provide a unique platform for the study of exotic superconductivity correlated with both 3d and 4d electrons in these Q1D compounds.
Following the discovery of superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_3$ containing [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ chains [J. K. Bao et al., arXiv: 1412.0067 (2014)], we succeeded in synthesizing an analogous compound, Rb$_2$Cr$_3$As$_3$, which also crystallizes in a hexagonal lattice. The replacement of K by Rb results in an expansion of $a$ axis by 3%, indicating a weaker interchain coupling in Rb$_2$Cr$_3$As$_3$. Bulk superconductivity emerges at 4.8 K, above which the normal-state resistivity shows a linear temperature dependence up to 35 K. The estimated upper critical field at zero temperature exceeds the Pauli paramagnetic limit by a factor of two. Furthermore, the electronic specific-heat coefficient extrapolated to zero temperature in the mixed state increases with $sqrt{H}$, suggesting existence of nodes in the superconducting energy gap. Hence Rb$_2$Cr$_3$As$_3$ manifests itself as another example of unconventional superconductor in the Cr$_3$As$_3$-chain based system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا