No Arabic abstract
We construct Darboux-Moutard type transforms for the two-dimensional conductivity equation. This result continues our recent studies of Darboux-Moutard type transforms for generalized analytic functions. In addition, at least, some of the Darboux-Moutard type transforms of the present work admit direct extension to the conductivity equation in multidimensions. Relations to the Schrodinger equation at zero energy are also shown.
We continue to develop the method for creation and annihilation of contour singularities in the $barpartial$--spectral data for the two-dimensional Schrodinger equation at fixed energy. Our method is based on the Moutard-type transforms for generalized analytic functions. In this note we show that this approach successfully works for point potentials.
In the first part of the paper we give a tensor version of the Dirac equation. In the second part we formulate and analyse a simple model equation which for weak external fields appears to have properties similar to those of the 2--dimensional Dirac equation.
We consider the radial wave equation in similarity coordinates within the semigroup formalism. It is known that the generator of the semigroup exhibits a continuum of eigenvalues and embedded in this continuum there exists a discrete set of eigenvalues with analytic eigenfunctions. Our results show that, for sufficiently regular data, the long time behaviour of the solution is governed by the analytic eigenfunctions. The same techniques are applied to the linear stability problem for the fundamental self--similar solution $chi_T$ of the wave equation with a focusing power nonlinearity. Analogous to the free wave equation, we show that the long time behaviour (in similarity coordinates) of linear perturbations around $chi_T$ is governed by analytic mode solutions. In particular, this yields a rigorous proof for the linear stability of $chi_T$ with the sharp decay rate for the perturbations.
We solve the group classification problem for the $2+1$ generalized quantum Zakharov-Kuznetsov equation. Particularly we consider the generalized equation $u_{t}+fleft( uright) u_{z}+u_{zzz}+u_{xxz}=0$, and the time-dependent Zakharov-Kuznetsov equation $u_{t}+delta left( tright) uu_{z}+lambda left( tright) u_{zzz}+varepsilon left( tright) u_{xxz}=0$% . Function $fleft( uright) $ and $delta left( tright) ,~lambda left( tright) $,~$varepsilon left( tright) $ are determine in order the equations to admit additional Lie symmetries. Finally, we apply the Lie invariants to find similarity solutions for the generalized quantum Zakharov-Kuznetsov equation.
In this paper we continue the formal analysis of the long-time asymptotics of the homoenergetic solutions for the Boltzmann equation that we began in [18]. They have the form $fleft( x,v,tright) =gleft(v-Lleft( tright) x,tright) $ where $Lleft( tright) =Aleft(I+tAright) ^{-1}$ where $A$ is a constant matrix. Homoenergetic solutions satisfy an integro-differential equation which contains, in addition to the classical Boltzmann collision operator, a linear hyperbolic term. Depending on the properties of the collision kernel the collision and the hyperbolic terms might be of the same order of magnitude as $ttoinfty$, or the collision term could be the dominant one for large times, or the hyperbolic term could be the largest. The first case has been rigorously studied in [17]. Formal asymptotic expansions in the second case have been obtained in [18]. All the solutions obtained in this case can be approximated by Maxwellian distributions with changing temperature. In this paper we focus in the case where the hyperbolic terms are much larger than the collision term for large times (hyperbolic-dominated behavior). In the hyperbolic-dominated case it does not seem to be possible to describe in a simple way all the long time asymptotics of the solutions, but we discuss several physical situations and formulate precise conjectures. We give explicit formulas for the relationship between density, temperature and entropy for these solutions. These formulas differ greatly from the ones at equilibrium.