Do you want to publish a course? Click here

Estimation under group actions: recovering orbits from invariants

124   0   0.0 ( 0 )
 Added by Alexander Wein
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (such as Z/p or SO(3)). The goal is to recover the orbit of the signal under the group action in the high-noise regime. This generalizes problems of interest such as multi-reference alignment (MRA) and the reconstruction problem in cryo-electron microscopy (cryo-EM). We obtain matching lower and upper bounds on the sample complexity of these problems in high generality, showing that the statistical difficulty is intricately determined by the invariant theory of the underlying symmetry group. In particular, we determine that for cryo-EM with noise variance $sigma^2$ and uniform viewing directions, the number of samples required scales as $sigma^6$. We match this bound with a novel algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from heterogeneous cryo-EM samples.



rate research

Read More

We consider the problem of estimating the covariance matrix of a random signal observed through unknown translations (modeled by cyclic shifts) and corrupted by noise. Solving this problem allows to discover low-rank structures masked by the existence of translations (which act as nuisance parameters), with direct application to Principal Components Analysis (PCA). We assume that the underlying signal is of length $L$ and follows a standard factor model with mean zero and $r$ normally-distributed factors. To recover the covariance matrix in this case, we propose to employ the second- and fourth-order shift-invariant moments of the signal known as the $textit{power spectrum}$ and the $textit{trispectrum}$. We prove that they are sufficient for recovering the covariance matrix (under a certain technical condition) when $r<sqrt{L}$. Correspondingly, we provide a polynomial-time procedure for estimating the covariance matrix from many (translated and noisy) observations, where no explicit knowledge of $r$ is required, and prove the procedures statistical consistency. While our results establish that covariance estimation is possible from the power spectrum and the trispectrum for low-rank covariance matrices, we prove that this is not the case for full-rank covariance matrices. We conduct numerical experiments that corroborate our theoretical findings, and demonstrate the favorable performance of our algorithms in various settings, including in high levels of noise.
We revisit the problem of estimating the mean of a real-valued distribution, presenting a novel estimator with sub-Gaussian convergence: intuitively, our estimator, on any distribution, is as accurate as the sample mean is for the Gaussian distribution of matching variance. Crucially, in contrast to prior works, our estimator does not require prior knowledge of the variance, and works across the entire gamut of distributions with bounded variance, including those without any higher moments. Parameterized by the sample size $n$, the failure probability $delta$, and the variance $sigma^2$, our estimator is accurate to within $sigmacdot(1+o(1))sqrt{frac{2logfrac{1}{delta}}{n}}$, tight up to the $1+o(1)$ factor. Our estimator construction and analysis gives a framework generalizable to other problems, tightly analyzing a sum of dependent random variables by viewing the sum implicitly as a 2-parameter $psi$-estimator, and constructing bounds using mathematical programming and duality techniques.
In this work we study the fundamental limits of approximate recovery in the context of group testing. One of the most well-known, theoretically optimal, and easy to implement testing procedures is the non-adaptive Bernoulli group testing problem, where all tests are conducted in parallel, and each item is chosen to be part of any certain test independently with some fixed probability. In this setting, there is an observed gap between the number of tests above which recovery is information theoretically (IT) possible, and the number of tests required by the currently best known efficient algorithms to succeed. Often times such gaps are explained by a phase transition in the landscape of the solution space of the problem (an Overlap Gap Property phase transition). In this paper we seek to understand whether such a phenomenon takes place for Bernoulli group testing as well. Our main contributions are the following: (1) We provide first moment evidence that, perhaps surprisingly, such a phase transition does not take place throughout the regime for which recovery is IT possible. This fact suggests that the model is in fact amenable to local search algorithms ; (2) we prove the complete absence of bad local minima for a part of the hard regime, a fact which implies an improvement over known theoretical results on the performance of efficient algorithms for approximate recovery without false-negatives, and finally (3) we present extensive simulations that strongly suggest that a very simple local algorithm known as Glauber Dynamics does indeed succeed, and can be used to efficiently implement the well-known (theoretically optimal) Smallest Satisfying Set (SSS) estimator.
We show how to construct highly symmetric algorithms for matrix multiplication. In particular, we consider algorithms which decompose the matrix multiplication tensor into a sum of rank-1 tensors, where the decomposition itself consists of orbits under some finite group action. We show how to use the representation theory of the corresponding group to derive simple constraints on the decomposition, which we solve by hand for n=2,3,4,5, recovering Strassens algorithm (in a particularly symmetric form) and new algorithms for larger n. While these new algorithms do not improve the known upper bounds on tensor rank or the matrix multiplication exponent, they are beautiful in their own right, and we point out modifications of this idea that could plausibly lead to further improvements. Our constructions also suggest further patterns that could be mined for new algorithms, including a tantalizing connection with lattices. In particular, using lattices we give the most transparent proof to date of Strassens algorithm; the same proof works for all n, to yield a decomposition with $n^3 - n + 1$ terms.
210 - Steven Hurder , Olga Lukina 2019
A Cantor action is a minimal equicontinuous action of a countably generated group G on a Cantor space X. Such actions are also called generalized odometers in the literature. In this work, we introduce two new conjugacy invariants for Cantor actions, the stabilizer limit group and the centralizer limit group. An action is wild if the stabilizer limit group is an increasing sequence of stabilizer groups without bound, and otherwise is said to be stable if this group chain is bounded. For Cantor actions by a finitely generated group G, we prove that stable actions satisfy a rigidity principle, and furthermore show that the wild property is an invariant of the continuous orbit equivalence class of the action. A Cantor action is said to be dynamically wild if it is wild, and the centralizer limit group is a proper subgroup of the stabilizer limit group. This property is also a conjugacy invariant, and we show that a Cantor action with a non-Hausdorff element must be dynamically wild. We then give examples of wild Cantor actions with non-Hausdorff elements, using recursive methods from Geometric Group Theory to define actions on the boundaries of trees.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا