No Arabic abstract
We consider scattering of massless higher-spin particles in the eikonal regime in four dimensions. By demanding the absence of asymptotic superluminality, corresponding to positivity of the eikonal phase, we place constraints on the possible cubic couplings which can appear in the theory. The cubic couplings come in two types: lower-derivative non-abelian vertices, and higher-derivative abelian vertices made out of gauge-invariant curvature tensors. We find that the abelian couplings between massless higher spins lead to an asymptotic time advance for certain choices of polarizations, indicating that these couplings should be absent unless new states come in at the scale suppressing the derivatives in these couplings. A subset of non-abelian cubic couplings are consistent with eikonal positivity, but are ruled out by consistency of the four-particle amplitude away from the eikonal limit. The eikonal constraints are therefore complementary to the four-particle test, ruling out even trivial cubic curvature couplings in any theory with a finite number of massless higher spins and no new physics at the scale suppressing derivatives in these vertices.
We constrain theories of a massive spin-2 particle coupled to a massless spin-2 particle by demanding the absence of a time advance in eikonal scattering. This is an $S$-matrix consideration that leads to model-independent constraints on the cubic vertices present in the theory. Of the possible cubic vertices for the two spin-2 particles, the requirement of subluminality leaves a particular linear combination of cubic vertices of the Einstein--Hilbert type. Either the cubic vertices must appear in this combination or new physics must enter at a scale parametrically the same as the mass of the massive spin-2 field. These conclusions imply that there is a one-parameter family of ghost-free bimetric theories of gravity that are consistent with subluminal scattering. When both particles couple to additional matter, subluminality places additional constraints on the matter couplings. We additionally reproduce these constraints by considering classical scattering off of a shockwave background in the ghost-free bimetric theory.
We place model-independent constraints on theories of massive spin-2 particles by considering the positivity of the phase shift in eikonal scattering. The phase shift is an asymptotic $S$-matrix observable, related to the time delay/advance experienced by a particle during scattering. Demanding the absence of a time advance leads to constraints on the cubic vertices present in the theory. We find that, in theories with massive spin-2 particles, requiring no time advance means that either: (i) the cubic vertices must appear as a particular linear combination of the Einstein-Hilbert cubic vertex and an $h_{mu u}^3$ potential term or (ii) new degrees of freedom or strong coupling must enter at parametrically the mass of the massive spin-2 field. These conclusions have implications for a variety of situations. Applied to theories of large-$N$ QCD, this indicates that any spectrum with an isolated massive spin-2 at the bottom must have these particular cubic self-couplings. Applied to de Rham-Gabadadze-Tolley massive gravity, the constraint is in accord with and generalizes previous results obtained from a shockwave calculation: of the two free dimensionless parameters in the theory there is a one parameter line consistent with a subluminal phase shift.
Electromagnetic fields of a massless charged particle are described by a gauge potential that is almost everywhere pure gauge. Solution of quantum mechanical wave equations in the presence of such fields is therefore immediate and leads to a new derivation of the quantum electrodynamical eikonal approximation. The elctromagnetic action in the eikonal limit is localised on a contour in a two-dimensional Minkowski subspace of four-dimensional space-time. The exact S-matrix of this reduced theory coincides with the eikonal approximation, and represents the generalisatin to electrodynamics of the approach of t Hooft and the Verlindes to Planckian scattering.
We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which do not take into account of the trace constraints, we use the complete BRST operator, including the trace constraints that describe an irreducible representation with definite integer helicity. As a result, we generalize the cubic vertex found in [arXiv:1205.3131 [hep-th]] and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields as well as the terms without derivatives.
We study the problem of interacting theories with (partially)-massless and conformal higher spin fields without matter in three dimensions. A new class of theories that have partially-massless fields is found, which significantly extends the well-known class of purely massless theories. More generally, it is proved that the complete theory has to have a form of the flatness condition for a connection of a Lie algebra, which, provided there is a non-degenerate invariant bilinear form, can be derived from the Chern-Simons action. We also point out the existence of higher spin theories without the dynamical graviton in the spectrum. As an application of a more general statement that the frame-like formulation can be systematically constructed starting from the metric one by employing a combination of the local BRST cohomology technique and the parent formulation approach, we also obtain an explicit uplift of any given metric-like vertex to its frame-like counterpart. This procedure is valid for general gauge theories while in the case of higher spin fields in d-dimensional Minkowski space one can even use as a starting point metric-like vertices in the transverse-traceless gauge. In particular, this gives the fully off-shell lift for transverse-traceless vertices.