Do you want to publish a course? Click here

On matter-free Higher Spin Gravities in 3d: (partially)-massless fields and general structure

73   0   0.0 ( 0 )
 Added by Evgeny Skvortsov D
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the problem of interacting theories with (partially)-massless and conformal higher spin fields without matter in three dimensions. A new class of theories that have partially-massless fields is found, which significantly extends the well-known class of purely massless theories. More generally, it is proved that the complete theory has to have a form of the flatness condition for a connection of a Lie algebra, which, provided there is a non-degenerate invariant bilinear form, can be derived from the Chern-Simons action. We also point out the existence of higher spin theories without the dynamical graviton in the spectrum. As an application of a more general statement that the frame-like formulation can be systematically constructed starting from the metric one by employing a combination of the local BRST cohomology technique and the parent formulation approach, we also obtain an explicit uplift of any given metric-like vertex to its frame-like counterpart. This procedure is valid for general gauge theories while in the case of higher spin fields in d-dimensional Minkowski space one can even use as a starting point metric-like vertices in the transverse-traceless gauge. In particular, this gives the fully off-shell lift for transverse-traceless vertices.



rate research

Read More

We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which do not take into account of the trace constraints, we use the complete BRST operator, including the trace constraints that describe an irreducible representation with definite integer helicity. As a result, we generalize the cubic vertex found in [arXiv:1205.3131 [hep-th]] and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields as well as the terms without derivatives.
We compute the one-loop free energies of the type-A$_ell$ and type-B$_ell$ higher-spin gravities in $(d+1)$-dimensional anti-de Sitter (AdS$_{d+1}$) spacetime. For large $d$ and $ell$, these theories have a complicated field content, and hence it is difficult to compute their zeta functions using the usual methods. Applying the character integral representation of zeta function developed in the companion paper arXiv:1805.05646 to these theories, we show how the computation of their zeta function can be shortened considerably. We find that the results previously obtained for the massless theories ($ell=1$) generalize to their partially-massless counterparts (arbitrary $ell$) in arbitrary dimensions.
89 - Thomas Basile 2017
We study a class of non-unitary so(2,d) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class of so(2,d) modules obeys of natural generalisation of a couple of defining properties of unitary higher-spin singletons. In particular, we find out that upon restriction to the subalgebra so(2,d-1), these representations branch onto a sum of modules describing partially massless fields of various depths. Finally, their tensor product is worked out in the particular case of d=4, where the appearance of a variety of mixed-symmetry partially massless fields in this decomposition is observed.
We revisit the problem of building consistent interactions for a multiplet of partially massless spin-2 fields in (anti-)de Sitter space. After rederiving and strengthening the existing no-go result on the impossibility of Yang-Mills type non-abelian deformations of the partially massless gauge algebra, we prove the uniqueness of the cubic interaction vertex and field-dependent gauge transformation that generalize the structures known from single-field analyses and in four spacetime dimensions, where our results also hold. Unlike in the case of one partially massless field, however, we show that for two or more particle species the cubic deformations can be made consistent at the complete non-linear level, albeit at the expense of allowing for negative relative signs between kinetic terms, making our new theory akin to conformal gravity. Our construction thus provides the first example of an interacting theory containing only partially massless fields.
We determine the current exchange amplitudes for free totally symmetric tensor fields $vf_{mu_1 ... mu_s}$ of mass $M$ in a $d$-dimensional $dS$ space, extending the results previously obtained for $s=2$ by other authors. Our construction is based on an unconstrained formulation where both the higher-spin gauge fields and the corresponding gauge parameters $Lambda_{mu_1 >... mu_{s-1}}$ are not subject to Fronsdals trace constraints, but compensator fields $alpha_{mu_1 ... mu_{s-3}}$ are introduced for $s > 2$. The free massive $dS$ equations can be fully determined by a radial dimensional reduction from a $(d+1)$-dimensional Minkowski space time, and lead for all spins to relatively handy closed-form expressions for the exchange amplitudes, where the external currents are conserved, both in $d$ and in $(d+1)$ dimensions, but are otherwise arbitrary. As for $s=2$, these amplitudes are rational functions of $(ML)^2$, where $L$ is the $dS$ radius. In general they are related to the hypergeometric functions $_3F_2(a,b,c;d,e;z)$, and their poles identify a subset of the partially-massless discrete states, selected by the condition that the gauge transformations of the corresponding fields contain some non-derivative terms. Corresponding results for $AdS$ spaces can be obtained from these by a formal analytic continuation, while the massless limit is smooth, with no van Dam-Veltman-Zakharov discontinuity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا