No Arabic abstract
We present serial-parallel conversion for a heralded single photon source (heralded SPS). We theoretically show that with the heralding signal, the serial-parallel converter can route a stream of n photons to n different spatial modes more efficiently than is the case without using a heralding signal. We also experimentally demonstrate serial-parallel conversion for two photons generated from a heralded SPS. We achieve a conversion efficiency of 0.533 pm 0.003, which exceeds the maximum achievable efficiency of 0.5 for serial-parallel conversion using unheralded photons, and is double the efficiency (0.25) for that using beamsplitters. When the losses in the optical converter are corrected for, the efficiency of the current setup can be increased up to 0.996 pm 0.006.
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.
Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, but they can suffer from a high two-photon emission probability, which in cases of non-cryogenic environment cannot be spectrally filtered. Here we propose two temporal purification-by-heralding methods for using a two photon emission process to yield highly pure and efficient single photon emission, bypassing the inherent problem of spectrally overlapping bi-photon emission. We experimentally demonstrate their feasibility on the emission from a single nanocrystal quantum dot, exhibiting single photon purities exceeding 99.5%, without a significant loss of single photon efficiency. These methods can be applied for any indeterministic source of spectrally broadband photon pairs.
We experimentally study a fiber-based three-stage nonlinear interferometer and demonstrate its application in generating heralded single photons with high efficiency and purity by spectral engineering. We obtain a heralding efficiency of 90% at a brightness of 0.039 photons/pulse. The purity of the source is checked by two-photon Hong-Ou-Mandel interference with a visibility of 95%+-6% (after correcting Raman scattering and multi-pair events). Our investigation indicates that the heralded source of single photons produced by the three-stage nonlinear interferometer has the advantages of high purity, high heralding efficiency, high brightness, and flexibility in wavelength and bandwidth selection.
Photon pairs produced by parametric down-conversion or four-wave mixing can interfere with each other in multiport interferometers, or carry entanglement between distant nodes for use in entanglement swapping. This requires the photons be spectrally pure to ensure good interference, and have high heralding efficiency to know accurately the number of photons involved and to maintain high rates as the number of photons grows. Spectral filtering is often used to remove noise and define spectral properties. For heralded single photons high purity and heralding efficiency is possible by filtering the heralding arm, but when both photons in typical pair sources are filtered, we show that the heralding efficiency of one or both of the photons is strongly reduced even by ideal spectral filters with 100% transmission in the passband: any improvement in reduced-state spectral purity from filtering comes at the cost of lowered heralding efficiency. We consider the fidelity to a pure, lossless single photon, symmetrize it to include both photons of the pair, and show this quantity is intrinsically limited for sources with spectral correlation. We then provide a framework for this effect for benchmarking common photon pair sources, and present an experiment where we vary the photon filter bandwidths and measure the increase in purity and corresponding reduction in heralding efficiency.
On-demand indistinguishable single photon sources are essential for quantum networking and communication. Semiconductor quantum dots are among the most promising candidates, but their typical emission wavelength renders them unsuitable for use in fibre networks. Here, we present quantum frequency conversion of near-infrared photons from a bright quantum dot to the telecommunication C-band, allowing integration with existing fibre architectures. We use a custom-built, tunable 2400 nm seed laser to convert single photons from 942 nm to 1550 nm in a difference frequency generation process. We achieve an end-to-end conversion efficiency of $sim$35%, demonstrate count rates approaching 1 MHz at 1550 nm with $g^{left(2right)}left(0right) = 0.04$, and achieve Hong-Ou-Mandel visibilities of 60%. We expect this scheme to be preferable to quantum dot sources directly emitting at telecom wavelengths for fibre based quantum networking.