Do you want to publish a course? Click here

Purification of single photons by temporal heralding of quantum dot sources

225   0   0.0 ( 0 )
 Added by Hamza Abudayyeh
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, but they can suffer from a high two-photon emission probability, which in cases of non-cryogenic environment cannot be spectrally filtered. Here we propose two temporal purification-by-heralding methods for using a two photon emission process to yield highly pure and efficient single photon emission, bypassing the inherent problem of spectrally overlapping bi-photon emission. We experimentally demonstrate their feasibility on the emission from a single nanocrystal quantum dot, exhibiting single photon purities exceeding 99.5%, without a significant loss of single photon efficiency. These methods can be applied for any indeterministic source of spectrally broadband photon pairs.



rate research

Read More

The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.
Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of solid-state systems, which often suffer from excess dephasing and multi-photon background emission.
Single-photon sources based on semiconductor quantum dots have emerged as an excellent platform for high efficiency quantum light generation. However, scalability remains a challenge since quantum dots generally present inhomogeneous characteristics. Here we benchmark the performance of fifteen deterministically fabricated single-photon sources. They display an average indistinguishability of 90.6 +/- 2.8 % with a single-photon purity of 95.4 +/- 1.5 % and high homogeneity in operation wavelength and temporal profile. Each source also has state-of-the-art brightness with an average first lens brightness value of 13.6 +/- 4.4 %. Whilst the highest brightness is obtained with a charged quantum dot, the highest quantum purity is obtained with neutral ones. We also introduce various techniques to identify the nature of the emitting state. Our study sets the groundwork for large-scale fabrication of identical sources by identifying the remaining challenges and outlining solutions.
252 - K. H. Madsen , S. Ates , J. Liu 2014
We demonstrate a single-photon collection efficiency of $(44.3pm2.1)%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4pm5)%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا