Do you want to publish a course? Click here

HelPal: A Search System for Mobile Crowd Service

58   0   0.0 ( 0 )
 Added by Yao Wu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Proliferation of ubiquitous mobile devices makes location based services prevalent. Mobile users are able to volunteer as providers of specific services and in the meanwhile to search these services. For example, drivers may be interested in tracking available nearby users who are willing to help with motor repair or are willing to provide travel directions or first aid. With the diffusion of mobile users, it is necessary to provide scalable means of enabling such users to connect with other nearby users so that they can help each other with specific services. Motivated by these observations, we design and implement a general location based system HelPal for mobile users to provide and enjoy instant service, which is called mobile crowd service. In this demo, we introduce a mobile crowd service system featured with several novel techniques. We sketch the system architecture and illustrate scenarios via several cases. Demonstration shows the user-friendly search interface for users to conveniently find skilled and qualified nearby service providers.



rate research

Read More

We investigate a type of emerging user-assisted mobile applications or services, referred to as Dynamic Mobile Ad-hoc Crowd Service (DMACS), such as collaborative streaming via smartphones or location privacy protection through a crowd of smartphone users. Such services are provided and consumed by users carrying smart mobile devices (e.g., smartphones) who are in close proximity of each other (e.g., within Bluetooth range). Users in a DMACS system dynamically arrive and depart over time, and are divided into multiple possibly overlapping groups according to radio range constraints. Crucial to the success of such systems is a mechanism that incentivizes users participation and ensures fair trading. In this paper, we design a multi-market, dynamic double auction mechanism, referred to as M-CHAIN, and show that it is truthful, feasible, individual-rational, no-deficit, and computationally efficient. The novelty and significance of M-CHAIN is that it addresses and solves the fair trading problem in a multi-group or multi-market dynamic double auction problem which naturally occurs in a mobile wireless environment. We demonstrate its efficiency via simulations based on generated user patterns (stochastic arrivals, random market clustering of users) and real-world traces.
Searching for concepts in science and technology is often a difficult task. To facilitate concept search, different types of human-generated metadata have been created to define the content of scientific and technical disclosures. Classification schemes such as the International Patent Classification (IPC) and MEDLINEs MeSH are structured and controlled, but require trained experts and central management to restrict ambiguity (Mork, 2013). While unstructured tags of folksonomies can be processed to produce a degree of structure (Kalendar, 2010; Karampinas, 2012; Sarasua, 2012; Bragg, 2013) the freedom enjoyed by the crowd typically results in less precision (Stock 2007). Existing classification schemes suffer from inflexibility and ambiguity. Since humans understand language, inference, implication, abstraction and hence concepts better than computers, we propose to harness the collective wisdom of the crowd. To do so, we propose a novel classification scheme that is sufficiently intuitive for the crowd to use, yet powerful enough to facilitate search by analogy, and flexible enough to deal with ambiguity. The system will enhance existing classification information. Linking up with the semantic web and computer intelligence, a Citizen Science effort (Good, 2013) would support innovation by improving the quality of granted patents, reducing duplicitous research, and stimulating problem-oriented solution design. A prototype of our design is in preparation. A crowd-sourced fuzzy and faceted classification scheme will allow for better concept search and improved access to prior art in science and technology.
74 - Luis Cruz , Rui Abreu 2019
Measuring energy consumption is a challenging task faced by developers when building mobile apps. This paper presents EMaaS: a system that provides reliable energy measurements for mobile applications, without requiring a complex setup. It combines estimations from an energy model with --- typically more reliable, but also expensive --- hardware-based measurements. On a per scenario basis, it decides whether the energy model is able to provide a reliable estimation of energy consumption. Otherwise, hardware-based measurements are provided. In addition, the system is accessible to the community of mobile software practitioners/researchers in the form of a Software as a Service. With this service, we aim at solving current problems in the field of energy efficiency in mobile software engineering: the complexity of hardware-based power monitor tools, the reliability of energy models, and the continuous need of data to build energy models.
125 - Jiajun Sun 2014
Crowd sensing is a new paradigm which leverages the pervasive smartphones to efficiently collect and upload sensing data, enabling numerous novel applications. To achieve good service quality for a crowd sensing application, incentive mechanisms are necessary for attracting more user participation. Most of existing mechanisms apply only for the budget-constraint scenario where the platform (the crowd sensing organizer) has a budget limit. On the contrary, we focus on a different scenario where the platform has a service limit. Based on the offline and online auction model, we consider a general problem: users submit their private profiles to the platform, and the platform aims at selecting a subset of users before a specified deadline for minimizing the total payment while a specific service can be completed. Specially, we design offline and online service-constraint incentive mechanisms for the case where the value function of selected users is monotone submodular. The mechanisms are individual rationality, task feasibility, computational efficiency, truthfulness, consumer sovereignty, constant frugality, and also performs well in practice. Finally, we use extensive simulations to demonstrate the theoretical properties of our mechanisms.
Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, in order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs participation level and the CSPs optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا