Do you want to publish a course? Click here

Service-Constraint Based Truthful Incentive Mechanisms for Crowd Sensing

118   0   0.0 ( 0 )
 Added by David Sun
 Publication date 2014
and research's language is English
 Authors Jiajun Sun




Ask ChatGPT about the research

Crowd sensing is a new paradigm which leverages the pervasive smartphones to efficiently collect and upload sensing data, enabling numerous novel applications. To achieve good service quality for a crowd sensing application, incentive mechanisms are necessary for attracting more user participation. Most of existing mechanisms apply only for the budget-constraint scenario where the platform (the crowd sensing organizer) has a budget limit. On the contrary, we focus on a different scenario where the platform has a service limit. Based on the offline and online auction model, we consider a general problem: users submit their private profiles to the platform, and the platform aims at selecting a subset of users before a specified deadline for minimizing the total payment while a specific service can be completed. Specially, we design offline and online service-constraint incentive mechanisms for the case where the value function of selected users is monotone submodular. The mechanisms are individual rationality, task feasibility, computational efficiency, truthfulness, consumer sovereignty, constant frugality, and also performs well in practice. Finally, we use extensive simulations to demonstrate the theoretical properties of our mechanisms.



rate research

Read More

We investigate a type of emerging user-assisted mobile applications or services, referred to as Dynamic Mobile Ad-hoc Crowd Service (DMACS), such as collaborative streaming via smartphones or location privacy protection through a crowd of smartphone users. Such services are provided and consumed by users carrying smart mobile devices (e.g., smartphones) who are in close proximity of each other (e.g., within Bluetooth range). Users in a DMACS system dynamically arrive and depart over time, and are divided into multiple possibly overlapping groups according to radio range constraints. Crucial to the success of such systems is a mechanism that incentivizes users participation and ensures fair trading. In this paper, we design a multi-market, dynamic double auction mechanism, referred to as M-CHAIN, and show that it is truthful, feasible, individual-rational, no-deficit, and computationally efficient. The novelty and significance of M-CHAIN is that it addresses and solves the fair trading problem in a multi-group or multi-market dynamic double auction problem which naturally occurs in a mobile wireless environment. We demonstrate its efficiency via simulations based on generated user patterns (stochastic arrivals, random market clustering of users) and real-world traces.
186 - Jiajun Sun 2013
Mobile crowd sensing (MCS) is a new paradigm which leverages the ubiquity of sensor-equipped mobile devices such as smartphones, music players, and in-vehicle sensors at the edge of the Internet, to collect data. The new paradigm will fuel the evolution of the Internet of Things to three changes as follows: First, the terminal devices at the edge of the Internet change from PCs to mobile phones. Second, the interactive mode extends from the virtual space to the real physical world. Thirdly, the forwarding manner of sensing data are undergoing the transition from the priori to the opportunistic. To better meet the demands of MCS applications at a societal scale, incentive mechanisms are indispensable. In this paper, we will first overview three categories of MCS applications, and then propose a new architecture for MCS applications. Based on the architecture, we discuss various research challenges about incentive mechanism designs for MCS applications, followed by potential future work discussions. Finally, we present potential future works.
217 - Jiajun Sun 2013
Crowd sensing is a new paradigm which leverages the ubiquity of sensor-equipped mobile devices to collect data. To achieve good quality for crowd sensing, incentive mechanisms are indispensable to attract more participants. Most of existing mechanisms focus on the expected utility prior to sensing, ignoring the risk of low quality solution and privacy leakage. Traditional incentive mechanisms such as the Vickrey-Clarke-Groves (VCG) mechanism and its variants are not applicable here. In this paper, to address these challenges, we propose a behavior based incentive mechanism for crowd sensing applications with budget constraints by applying sequential all-pay auctions in mobile social networks (MSNs), not only to consider the effects of extensive user participation, but also to maximize high quality of the context based sensing content submission for crowd sensing platform under the budget constraints, where users arrive in a sequential order. Through an extensive simulation, results indicate that incentive mechanisms in our proposed framework outperform the best existing solution.
We consider a multi-round auction setting motivated by pay-per-click auctions for Internet advertising. In each round the auctioneer selects an advertiser and shows her ad, which is then either clicked or not. An advertiser derives value from clicks; the value of a click is her private information. Initially, neither the auctioneer nor the advertisers have any information about the likelihood of clicks on the advertisements. The auctioneers goal is to design a (dominant strategies) truthful mechanism that (approximately) maximizes the social welfare. If the advertisers bid their true private values, our problem is equivalent to the multi-armed bandit problem, and thus can be viewed as a strategic version of the latter. In particular, for both problems the quality of an algorithm can be characterized by regret, the difference in social welfare between the algorithm and the benchmark which always selects the same best advertisement. We investigate how the design of multi-armed bandit algorithms is affected by the restriction that the resulting mechanism must be truthful. We find that truthful mechanisms have certain strong structural properties -- essentially, they must separate exploration from exploitation -- and they incur much higher regret than the optimal multi-armed bandit algorithms. Moreover, we provide a truthful mechanism which (essentially) matches our lower bound on regret.
89 - Susu Xu , Weiguang Mao , Yue Cao 2018
Vehicular mobile crowd sensing is a fast-emerging paradigm to collect data about the environment by mounting sensors on vehicles such as taxis. An important problem in vehicular crowd sensing is to design payment mechanisms to incentivize drivers (agents) to collect data, with the overall goal of obtaining the maximum amount of data (across multiple vehicles) for a given budget. Past works on this problem consider a setting where each agent operates in isolation---an assumption which is frequently violated in practice. In this paper, we design an incentive mechanism to incentivize agents who can engage in arbitrary collusions. We then show that in a homogeneous setting, our mechanism is optimal, and can do as well as any mechanism which knows the agents preferences a priori. Moreover, if the agents are non-colluding, then our mechanism automatically does as well as any other non-colluding mechanism. We also show that our proposed mechanism has strong (and asymptotically optimal) guarantees for a more general heterogeneous setting. Experiments based on synthesized data and real-world data reveal gains of over 30% attained by our mechanism compared to past literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا