Do you want to publish a course? Click here

Viscotaxis: microswimmer navigation in viscosity gradients

267   0   0.0 ( 0 )
 Added by Benno Liebchen
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The survival of many microorganisms, like textit{Leptospira} or textit{Spiroplasma} bacteria, can depend on their ability to navigate towards regions of favorable viscosity. While this ability, called viscotaxis, has been observed in several bacterial experiments, the underlying mechanism remains unclear. Here, we provide a framework to study viscotaxis of self-propelled swimmers in slowly varying viscosity fields and show that suitable body shapes create viscotaxis based on a systematic asymmetry of viscous forces acting on a microswimmer. Our results shed new light on viscotaxis in textit{Spiroplasma} and textit{Leptospira} and suggest that dynamic body shape changes exhibited by both types of microorganisms may have an unrecognized functionality: to prevent them from drifting to low viscosity regions where they swim poorly. The present theory classifies microswimmers regarding their ability to show viscotaxis and can be used to design synthetic viscotactic swimmers, e.g. for delivering drugs to a target region distinguished by viscosity.



rate research

Read More

Tracer particles immersed in suspensions of biological microswimmers such as E. coli or Chlamydomonas display phenomena unseen in conventional equilibrium systems, including strongly enhanced diffusivity relative to the Brownian value and non-Gaussian displacement statistics. In dilute, 3-dimensional suspensions, these phenomena have typically been explained by the hydrodynamic advection of point tracers by isolated microswimmers, while, at higher concentrations, correlations between pusher microswimmers such as E. coli can increase the effective diffusivity even further. Anisotropic tracers in active suspensions can be expected to exhibit even more complex behaviour than spherical ones, due to the presence of a nontrivial translation-rotation coupling. Using large-scale lattice Boltzmann simulations of model microswimmers described by extended force dipoles, we study the motion of ellipsoidal point tracers immersed in 3-dimensional microswimmer suspensions. We find that the rotational diffusivity of tracers is much less affected by swimmer-swimmer correlations than the translational diffusivity. We furthermore study the anisotropic translational diffusion in the particle frame and find that, in pusher suspensions, the diffusivity along the ellipsoid major axis is higher than in the direction perpendicular to it, albeit with a smaller ratio than for Brownian diffusion. Thus, we find that far field hydrodynamics cannot account for the anomalous coupling between translation and rotation observed in experiments, as was recently proposed. Finally, we study the probability distributions (PDFs) of translational and rotational displacements. In accordance with experimental observations, for short observation times we observe strongly non-Gaussian PDFs that collapse when rescaled with their variance, which we attribute to the ballistic nature of tracer motion at short times.
Microswimmers exhibit an intriguing, highly-dynamic collective motion with large-scale swirling and streaming patterns, denoted as active turbulence -- reminiscent of classical high-Reynolds-number hydrodynamic turbulence. Various experimental, numerical, and theoretical approaches have been applied to elucidate similarities and differences to inertial hydrodynamic and active turbulence. These studies reveal a wide spectrum of possible structural and dynamical behaviors of active mesoscale systems, not necessarily consistent with the predictions of the Kolmogorov-Kraichnan theory of turbulence. We use squirmers embedded in a mesoscale fluid, modeled by the multiparticle collision dynamics (MPC) approach, to explore the collective behavior of bacteria-type microswimmers. Our model includes the active hydrodynamic stress generated by propulsion, and a rotlet dipole characteristic for flagellated bacteria. We find emergent clusters, activity-induced phase separation, and swarming, depending on density, active stress, and the rotlet dipole strength. The analysis of the squirmer dynamics in the swarming phase yields Kolomogorov-Kraichnan-type hydrodynamic turbulence and energy spectra for sufficiently high concentrations and strong rotlet dipoles. This emphasizes the paramount importance of the hydrodynamic flow field for swarming and bacterial turbulence.
Bacterial biofilms, surface-attached communities of cells, are in some respects similar to colloidal solids; both are densely packed with non-zero yield stresses. However, unlike non-living materials, bacteria reproduce and die, breaking mechanical equilibrium and inducing collective dynamic responses. We report experiments and theory investigating the motion of immotile Vibrio cholerae, which can kill each other and reproduce in biofilms. We vary viscosity by using bacterial variants that secrete different amounts of extracellular matrix polymers, but are otherwise identical. Unlike thermally-driven diffusion, in which diffusivity decreases with increased viscosity, we find that cellular motion mediated by death and reproduction is independent of viscosity over timescales relevant to bacterial reproduction. To understand this surprising result, we use two separate modeling approaches. First we perform explicitly mechanical simulations of one-dimensional chains of Voigt-Kelvin elements that can die and reproduce. Next, we perform an independent statistical approach, modeling Brownian motion with the classic Langevin equation under an effective temperature that depends on cellular division rate. The diffusion of cells in both approaches agrees quite well, supporting a kinetic interpretation for the effective temperature used here and developed in previous work. As the viscoelastic behavior of biofilms is believed to play a large role in their anomalous biological properties, such as antibiotic resistance, the independence of cellular diffusive motion --- important for biofilm growth and remodeling --- on viscoelastic properties likely holds ecological, medical, and industrial relevance.
Viscosity is an important property of out-of-equilibrium systems such as active biological materials and driven non-Newtonian fluids, and for fields ranging from biomaterials to geology, energy technologies and medicine. However, noninvasive viscosity measurements typically require integration times of seconds. Here we demonstrate a four orders-of-magnitude improvement in speed, down to twenty microseconds, with uncertainty dominated by fundamental thermal noise for the first time. We achieve this using the instantaneous velocity of a trapped particle in an optical tweezer. To resolve the instantaneous velocity we develop a structured-light detection system that allows particle tracking with megahertz bandwidths. Our results translate viscosity from a static averaged property, to one that may be dynamically tracked on the timescales of active dynamics. This opens a pathway to new discoveries in out-of-equilibrium systems, from the fast dynamics of phase transitions, to energy dissipation in motor molecule stepping, to violations of fluctuation laws of equilibrium thermodynamics.
We propose two-dimensional organic poly(heptazine imide) (PHI) carbon nitride microparticles as light-driven microswimmers in various ionic and biological media. Their demonstrated high-speed (15-23 $mu$m/s) swimming in multi-component ionic solutions with concentrations up to 1 M and without dedicated fuels is unprecedented, overcoming one of the bottlenecks of previous light-driven microswimmers. Such high ion tolerance is attributed to a favorable interplay between the particles textural and structural nanoporosity and optoionic properties, facilitating ionic interactions in solutions with high salinity. Biocompatibility of the microswimmers is validated by cell viability tests with three different cell types and primary cells. The nanopores of the swimmers are loaded with a model cancer drug, doxorubicin (DOX), in high (185%) loading efficiency without passive release. Controlled drug release is reported in different pH conditions and can be triggered on-demand also by illumination. Light-triggered, boosted release of DOX and its active degradation products is demonstrated in oxygen-poor conditions using the intrinsic, environmentally sensitive and light-induced charge storage properties of PHI, which could enable future theranostic applications in oxygen-deprived tumor regions. These organic PHI microswimmers simultaneously solve the current light-driven microswimmer challenges of high ion tolerance, fuel-free high-speed propulsion in biological media, biocompatibility and controlled on-demand cargo release towards their biomedical, environmental and other potential future applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا