Do you want to publish a course? Click here

Hierarchy of Information Scrambling, Thermalization, and Hydrodynamic Flow in Graphene

72   0   0.0 ( 0 )
 Added by Markus J. Klug
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determine the information scrambling rate $lambda_{L}$ due to electron-electron Coulomb interaction in graphene. $lambda_{L}$ characterizes the growth of chaos and has been argued to give information about the thermalization and hydrodynamic transport coefficients of a many-body system. We demonstrate that $lambda_{L}$ behaves for strong coupling similar to transport and energy relaxation rates. A weak coupling analysis, however, reveals that scrambling is related to dephasing or single particle relaxation. Furthermore, $lambda_{L}$ is found to be parametrically larger than the collision rate relevant for hydrodynamic processes, such as electrical conduction or viscous flow, and the rate of energy relaxation, relevant for thermalization. Thus, while scrambling is obviously necessary for thermalization and quantum transport, it does generically not set the time scale for these processes. In addition we derive a quantum kinetic theory for information scrambling that resembles the celebrated Boltzmann equation and offers a physically transparent insight into quantum chaos in many-body systems.



rate research

Read More

Quantum information scrambling under many-body dynamics is of fundamental interest. The tripartite mutual information can quantify the scrambling via its negative value. Here, we first study the quench dynamics of tripartite mutual information in a non-integrable Ising model where the strong and weak thermalization are observed with different initial states. We numerically show that the fastest scrambling can occur when the energy density of the chosen initial state possesses the maximum density of states. We then present an experimental protocol for observing weak and strong thermalization in a superconducting qubit array. Based on the protocol, the relation between scrambling and thermalization revealed in this work can be directly verified by superconducting quantum simulations.
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, is a crucial for modern physics. Using a ladder-type superconducting quantum processor, we perform analog quantum simulations of both the $XX$ ladder and one-dimensional (1D) $XX$ model. By measuring the dynamics of local observables, entanglement entropy and tripartite mutual information, we signal quantum thermalization and information scrambling in the $XX$ ladder. In contrast, we show that the $XX$ chain, as free fermions on a 1D lattice, fails to thermalize, and local information does not scramble in the integrable channel. Our experiments reveal ergodicity and scrambling in the controllable qubit ladder, and opens the door to further investigations on the thermodynamics and chaos in quantum many-body systems.
We present an ab-initio study of photocarrier dynamics in graphene due to electron-phonon (EP) interactions. Using the Boltzmann relaxation-time approximation with parameters determined from density functional theory (DFT) and a complementary, explicitly solvable model we show that the photocarrier thermalization time changes by orders of magnitude, when the excitation energy is reduced from 1 eV to the 100 meV range. In detail, the ultrafast thermalization at low temperatures takes place on a femtosecond timescale via optical phonon emission, but slows down to picoseconds once excitation energies become comparable with these optical phonon energy quanta. In the latter regime, thermalization times exhibit a pronounced dependence on temperature. Our DFT model includes all the inter- and intraband transitions due to EP scattering. Thanks to the high melting point of graphene we extend our studies up to 2000~K and show that such high temperatures reduce the photocarrier thermalization time through phonon absorption.
We present a new framework for computing low frequency transport properties of strongly correlated, ergodic systems. Our main assumption is that, when a thermalizing diffusive system is driven at frequency $omega$, domains of size $xi simsqrt{D/omega}$ can be considered as internally thermal, but weakly coupled with each other. We calculate the transport coefficients to lowest order in the coupling, assuming incoherent transport between such domains. Our framework naturally captures the sub-leading non analytic corrections to the transport coefficients, known as hydrodynamic long time tails. In addition, it allows us to obtain a generalized relation between charge and thermal transport coefficients, in the spirit of the Wiedemann-Franz law. We verify our results, which satisfy several non-trivial consistency checks, via exact diagonalization studies on the one-dimensional extended Fermi-Hubbard model.
The many-body localization transition in quasiperiodic systems has been extensively studied in recent ultracold atom experiments. At intermediate quasiperiodic potential strength, a surprising Griffiths-like regime with slow dynamics appears in the absence of random disorder and mobility edges. In this work, we study the interacting Aubry-Andre model, a prototype quasiperiodic system, as a function of incommensurate potential strength using a novel dynamical measure, information scrambling, in a large system of 200 lattice sites. Between the thermal phase and the many-body localized phase, we find an intermediate dynamical phase where the butterfly velocity is zero and information spreads in space as a power-law in time. This is in contrast to the ballistic spreading in the thermal phase and logarithmic spreading in the localized phase. We further investigate the entanglement structure of the many-body eigenstates in the intermediate phase and find strong fluctuations in eigenstate entanglement entropy within a given energy window, which is inconsistent with the eigenstate thermalization hypothesis. Machine-learning on the entanglement spectrum also reaches the same conclusion. Our large-scale simulations suggest that the intermediate phase with vanishing butterfly velocity could be responsible for the slow dynamics seen in recent experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا