No Arabic abstract
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, is a crucial for modern physics. Using a ladder-type superconducting quantum processor, we perform analog quantum simulations of both the $XX$ ladder and one-dimensional (1D) $XX$ model. By measuring the dynamics of local observables, entanglement entropy and tripartite mutual information, we signal quantum thermalization and information scrambling in the $XX$ ladder. In contrast, we show that the $XX$ chain, as free fermions on a 1D lattice, fails to thermalize, and local information does not scramble in the integrable channel. Our experiments reveal ergodicity and scrambling in the controllable qubit ladder, and opens the door to further investigations on the thermodynamics and chaos in quantum many-body systems.
We experimentally study the ergodic dynamics of a 1D array of 12 superconducting qubits with a transverse field, and identify the regimes of strong and weak thermalization with different initial states. We observe convergence of the local observable to its thermal expectation value in the strong-thermalizaion regime. For weak thermalization, the dynamics of local observable exhibits an oscillation around the thermal value, which can only be attained by the time average. We also demonstrate that the entanglement entropy and concurrence can characterize the regimes of strong and weak thermalization. Our work provides an essential step towards a generic understanding of thermalization in quantum systems.
Quantum information scrambling under many-body dynamics is of fundamental interest. The tripartite mutual information can quantify the scrambling via its negative value. Here, we first study the quench dynamics of tripartite mutual information in a non-integrable Ising model where the strong and weak thermalization are observed with different initial states. We numerically show that the fastest scrambling can occur when the energy density of the chosen initial state possesses the maximum density of states. We then present an experimental protocol for observing weak and strong thermalization in a superconducting qubit array. Based on the protocol, the relation between scrambling and thermalization revealed in this work can be directly verified by superconducting quantum simulations.
This is an updated version of supplementary information to accompany Quantum supremacy using a programmable superconducting processor, an article published in the October 24, 2019 issue of Nature. The main article is freely available at https://www.nature.com/articles/s41586-019-1666-5. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.
Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout the entire system. This concept underlies the dynamics of thermalization in closed quantum systems, and more recently has emerged as a powerful tool for characterizing chaos in black holes. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, since scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here, we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous litmus test for scrambling while projecting potential circuit errors into an ancillary observable. We engineer quantum scrambling processes through a tunable 3-qubit unitary operation as part of a 7-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically $sim80%$, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.
We provide a protocol to measure out-of-time-order correlation functions. These correlation functions are of theoretical interest for diagnosing the scrambling of quantum information in black holes and strongly interacting quantum systems generally. Measuring them requires an echo-type sequence in which the sign of a many-body Hamiltonian is reversed. We detail an implementation employing cold atoms and cavity quantum electrodynamics to realize the chaotic kicked top model, and we analyze effects of dissipation to verify its feasibility with current technology. Finally, we propose in broad strokes a number of other experimental platforms where similar out-of-time-order correlation functions can be measured.