Do you want to publish a course? Click here

Direct detection of gravitational waves can measure the time variation of the Planck mass

263   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent discovery of a $gamma$-ray counterpart to a gravitational wave event has put extremely stringent constraints on the speed of gravitational waves at the present epoch. In turn, these constraints place strong theoretical pressure on potential modifications of gravity, essentially allowing only a conformally-coupled scalar to be active in the present Universe. In this paper, we show that direct detection of gravitational waves from optically identified sources can also measure or constrain the strength of the conformal coupling in scalar--tensor models through the time variation of the Planck mass. As a first rough estimate, we find that the LISA satellite can measure the dimensionless time variation of the Planck mass (the so-called parameter $alpha_M$) at redshift around 1.5 with an error of about 0.03 to 0.13, depending on the assumptions concerning future observations. Stronger constraints can be achieved once reliable distance indicators at $z>2$ are developed, or with GW detectors that extend the capabilities of LISA, like the proposed Big Bang Observer. We emphasize that, just like the constraints on the gravitational speed, the bound on $alpha_M$ is independent of the cosmological model.



rate research

Read More

A second generation of gravitational wave detectors will soon come online with the objective of measuring for the first time the tiny gravitational signal from the coalescence of black hole and/or neutron star binaries. In this communication, we propose a new time-frequency search method alternative to matched filtering techniques that are usually employed to detect this signal. This method relies on a graph that encodes the time evolution of the signal and its variability by establishing links between coefficients in the multi-scale time-frequency decomposition of the data. We provide a proof of concept for this approach.
The prospects for direct measurements of inflationary gravitational waves by next generation interferometric detectors inferred from the possible detection of B-mode polarization of the cosmic microwave background are studied. We compute the spectra of the gravitational wave background and the signal-to-noise ratios by two interferometric detectors (DECIGO and BBO) for large-field inflationary models in which the tensor-to-scalar ratio is greater than the order of 0.01. If the reheating temperature $T_{rm RH}$ of chaotic inflation with the quadratic potential is high ($T_{rm RH}>7.9times10^6$ GeV for upgraded DECIGO and $T_{rm RH}> 1.8times 10^{6}$ GeV for BBO), it will be possible to reach the sensitivity of the gravitational background in future experiments at $3sigma$ confidence level. The direct detection is also possible for natural inflation with the potential $V(phi)=Lambda^4 [1-cos(phi/f)]$, provided that $f>4.2 M_{rm pl}$ (upgraded DECIGO) and $f>3.6 M_{rm pl}$ (BBO) with $T_{rm RH}$ higher than $10^8$ GeV. The quartic potential $V(phi)=lambda phi^4/4$ with a non-minimal coupling $xi$ between the inflaton field $phi$ and the Ricci scalar $R$ gives rise to a detectable level of gravitational waves for $|xi|$ smaller than the order of 0.01, irrespective of the reheating temperature.
Cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum data of the cosmic microwave background (CMB) obtained from the Planck 2015 results are presented. We consider the harmonic attractor model, in which the scalar field has a harmonic potential with curvature ($beta$) in the Einstein frame and the theory relaxes toward the Einstein gravity with time. Analyzing the {it TT}, {it EE}, {it TE} and lensing CMB data from Planck by the Markov chain Monte Carlo method, we find that the present-day deviation from the Einstein gravity (${alpha_0}^2$) is constrained as ${alpha_0}^2<2.5times10^{-4-4.5beta^2} (95.45% {rm C.L.})$ and ${alpha_0}^2<6.3times10^{-4-4.5beta^2} (99.99% {rm C.L.})$ for $0<beta<0.4$. The time variation of the effective gravitational constant between the recombination and the present epochs is constrained as $G_{rm rec}/G_0<1.0056 (95.45% {rm C.L.})$ and $G_{rm rec}/G_0<1.0115 (99.99 %{rm C.L.})$. We also find that the constraints are little affected by extending to nonflat cosmological models because the diffusion damping effect revealed by Planck breaks the degeneracy of the projection effect.
We describe detection methods for extensions of gravitational wave searches to sub-solar mass compact binaries. Sub-solar mass searches were previously carried out using Initial LIGO, and Advanced LIGO boasts a detection volume approximately 1000 times bigger than Initial LIGO at design sensitivity. Low masses present computational difficulties, and we suggest a way to rein in the increase while retaining a sensitivity much greater than previous searches. Sub-solar mass compact objects are of particular interest because they are not expected to form astrophysically. If detected they could be evidence of primordial black holes (PBH). We consider a particular model of PBH binary formation that would allow LIGO/Virgo to place constraints on this population within the context of dark matter, and we demonstrate how to obtain conservative bounds for the upper limit on the dark matter fraction.
When gravitational waves pass through the nuclear star clusters of galactic lenses, they may be microlensed by the stars. Such microlensing can cause potentially observable beating patterns on the waveform due to waveform superposition and magnify the signal. On the one hand, the beating patterns and magnification could lead to the first detection of a microlensed gravitational wave. On the other hand, microlensing introduces a systematic error in strong lensing use-cases, such as localization and cosmography studies. We show that diffraction effects are important when we consider GWs in the LIGO frequency band lensed by objects with masses $lesssim 100 , rm M_odot$. We also show that the galaxy hosting the microlenses changes the lensing configuration qualitatively, so we cannot treat the microlenses as isolated point mass lenses when strong lensing is involved. We find that for stellar lenses with masses $sim 1 , rm M_odot$, diffraction effects significantly suppress the microlensing magnification. Thus, our results suggest that gravitational waves lensed by typical galaxy or galaxy cluster lenses may offer a relatively clean environment to study the lens system, free of contamination by stellar lenses. We discuss potential implications for the strong lensing science case. More complicated microlensing configurations will require further study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا