Do you want to publish a course? Click here

Boomerang RG flows with intermediate conformal invariance

86   0   0.0 ( 0 )
 Added by Christopher Rosen
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

For a class of $D=5$ holographic models we construct boomerang RG flow solutions that start in the UV at an $AdS_5$ vacuum and end up at the same vacuum in the IR. The RG flows are driven by deformations by relevant operators that explicitly break translation invariance. For specific models, such that they admit another $AdS_5$ solution, $AdS_5^c$, we show that for large enough deformations the RG flows approach an intermediate scaling regime with approximate conformal invariance governed by $AdS^c_5$. For these flows we calculate the holographic entanglement entropy and the entropic $c$-function for the RG flows. The latter is not monotonic, but it does encapsulate the degrees of freedom in each scaling region. For a different set of models, we find boomerang RG flows with intermediate scaling governed by an $AdS_2timesmathbb{R}^3$ solution which breaks translation invariance. Furthermore, for large enough deformations these models have interesting and novel thermal insulating ground states for which the entropy vanishes as the temperature goes to zero, but not as a power-law. Remarkably, the thermal diffusivity and the butterfly velocity for these new insulating ground states are related via $D=Ev^2_B/(2pi T)$, with $E(T)to 0.5$ as $Tto 0$.

rate research

Read More

We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitational models containing a dilatonic scalar and a massive vector field with appropriate choices of the scalar potential and couplings. The infrared $AdS_4$ fixed point describes a new ground state for strongly coupled quantum systems realizing such scalings, thus avoiding the well-known extensive zero temperature entropy associated with $AdS_2 times mathbb{R}^2$. We also examine the zero temperature behavior of the optical conductivity in these backgrounds and identify two scaling regimes before the UV CFT scaling is reached. The scaling of the conductivity is controlled by the emergent IR conformal symmetry at very low frequencies, and by the intermediate scaling regime at higher frequencies.
The most general lagrangian describing spin 2 particles in flat spacetime and containing operators up to (mass) dimension 6 is carefully analyzed, determining the precise conditions for it to be invariant under linearized (transverse) diffeomorphisms, linearized Weyl rescalings, and conformal transformations.
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectured to coincide with the hierarchy of renormalization-group flows among the SCFTs. In this paper we test this conjecture for $G=mathrm{SU}(k)$, where AdS$_7$ duals exist in IIA. We work with a seven-dimensional gauged supergravity, consisting of the gravity multiplet and two $mathrm{SU}(k)$ non-Abelian vector multiplets. We show that this theory has many supersymmetric AdS$_7$ vacua, determined by two nilpotent elements, which are naturally interpreted as IIA AdS$_7$ solutions. The BPS equations for domain walls connecting two such vacua can be solved analytically, up to a Nahm equation with certain boundary conditions. The latter admit a solution connecting two vacua if and only if the corresponding nilpotent elements are related by the natural partial ordering, in agreement with the field theory conjecture.
Motivated by its potential use in constraining the structure of 6D renormalization group flows, we determine the low energy dilaton-axion effective field theory of conformal and global symmetry breaking in 6D conformal field theories (CFTs). While our analysis is largely independent of supersymmetry, we also investigate the case of 6D superconformal field theories (SCFTs), where we use the effective action to present a streamlined proof of the 6D a-theorem for tensor branch flows, as well as to constrain properties of Higgs branch and mixed branch flows. An analysis of Higgs branch flows in some examples leads us to conjecture that in 6D SCFTs, an interacting dilaton effective theory may be possible even when certain 4-dilaton 4-derivative interaction terms vanish, because of large momentum modifications to 4-point dilaton scattering amplitudes. This possibility is due to the fact that in all known $D > 4$ CFTs, the approach to a conformal fixed point involves effective strings which are becoming tensionless.
108 - Daniel Baumann , Daniel Green , 2019
Sum rules connecting low-energy observables to high-energy physics are an interesting way to probe the mechanism of inflation and its ultraviolet origin. Unfortunately, such sum rules have proven difficult to study in a cosmological setting. Motivated by this problem, we investigate a precise analogue of inflation in anti-de Sitter spacetime, where it becomes dual to a slow renormalization group flow in the boundary quantum field theory. This dual description provides a firm footing for exploring the constraints of unitarity, analyticity, and causality on the bulk effective field theory. We derive a sum rule that constrains the bulk coupling constants in this theory. In the bulk, the sum rule is related to the speed of radial propagation, while on the boundary, it governs the spreading of nonlocal operators. When the spreading speed approaches the speed of light, the sum rule is saturated, suggesting that the theory becomes free in this limit. We also discuss whether similar results apply to inflation, where an analogous sum rule exists for the propagation speed of inflationary fluctuations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا