Do you want to publish a course? Click here

D mesons in strongly magnetized asymmetric nuclear matter

156   0   0.0 ( 0 )
 Added by Amruta Mishra
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The medium modifications of the open charm mesons ($D$ and $bar D$) are studied in isospin asymmetric nuclear matter in the presence of strong magnetic fields, using a chiral effective model. The mass modifications of these mesons in the effective hadronic model, arise due to their interactions with the protons, neutrons and the scalar mesons (non-strange isoscalar $sigma$, strange isoscalar, $zeta$ and non-strange isovector, $delta$), in the magnetized nuclear matter. In the presence of magnetic field, for the charged baryon, i.e., the proton, the number density as well as the scalar density have contributions due to the summation over the Landau energy levels. For a given value of the baryon density, $rho_B$, and isospin asymmetry, the scalar fields are solved self consistently from their coupled equations of motion. The modifications of the masses of the $D$ and $bar D$ mesons are calculated, from the medium modifications of the scalar fields and the nucleons. The effects of the anomalous magnetic moments of the nucleons on the masses of the open charm mesons are also investigated in the present work. The effects of isospin asymmetry as well as of the anomalous magnetic moments are observed to be prominent at high densities for large values of magnetic fields.



rate research

Read More

The in-medium partial decay widths of $Upsilon (4S) rightarrow Bbar B$ in magnetized asymmetric nuclear matter are studied using a field theoretic model for composite hadrons with quark/antiquark constituents. The medium modifications of the decay widths of $Upsilon (4S)$ to $Bbar B$ pair in magnetized matter, arise due to the mass modifications of the decaying $Upsilon (4S)$ as well as of the produced $B$ and $bar B$ mesons. The effects of the anomalous magnetic moments for the proton and neutron are taken into consideration in the present investigation. The presence of the external magnetic field is observed to lead to different mass modifications within the $B (B^+, B^0)$ as well as the $bar B (B^-, bar {B^0})$ doublets, even in isospin symmetric nuclear matter, due to the difference in the interactions of the proton and the neutron to the electromagnetic field. This leads to difference in the upsilon decay widths to the neutral ($B^0 bar {B^0}$) and the charged ($B^+ B^-$) pairs in the magnetized symmetric nuclear matter. The isospin asymmetry is observed to lead to quite different behaviours for the $Upsilon (4S)$ decay widths to the charged and neutral $Bbar B$. In the presence of the magnetic field, the Landau level contributions give rise to positive shifts in the masses of the charged $B$ and $bar B$ mesons. This leads to the decay of $Upsilon(4S)$ to the charged $B^+ B^-$ to be suppressed as compared to the neutral $Bbar B$ pair, especially at low densities. This may lead to suppression in the production of the charged $B^pm$ mesons as compared to the neutral $B^0$ and $bar {B^0}$ mesons at LHC and RHIC.
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI.
151 - L. Tolos , D. Cabrera , A. Ramos 2008
We study the properties of $K$ and $bar K$ mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels which incorporates the $s$- and p-waves of the kaon-nucleon interaction. The in-medium solution accounts for Pauli blocking effects, mean-field binding on all the baryons involved, and $pi$ and kaon self-energies. We calculate $K$ and $bar K$ (off-shell) spectral functions and single particle properties. The $bar K$ effective mass gets lowered by about -50 MeV in cold nuclear matter at saturation density and by half this reduction at T=100 MeV. The p-wave contribution to the ${bar K}$ optical potential, due to $Lambda$, $Sigma$ and $Sigma^*$ excitations, becomes significant for momenta larger than 200 MeV/c and reduces the attraction felt by the $bar K$ in the nuclear medium.The $bar K$ spectral function spreads over a wide range of energies, reflecting the melting of the $Lambda (1405)$ resonance and the contribution of $YN^{-1}$ components at finite temperature. In the $KN$ sector, we find that the low-density theorem is a good approximation for the $K$ self-energy close to saturation density due to the absence of resonance-hole excitations. The $K$ potential shows a moderate repulsive behavior, whereas the quasi-particle peak is considerably broadened with increasing density and temperature. We discuss the implications for the decay of the $phi$ meson at SIS/GSI energies as well as in the future FAIR/GSI project.
We study the medium modifications of the spectral functions as well as production cross-sections of the strange vector mesons ($phi$, $K^*$ and $bar {K^*}$) in isospin asymmetric strange hadronic matter. These are obtained from the in-medium masses of the open strange mesons and the decay widths $phi rightarrow Kbar K$, $K^* rightarrow Kpi$ and $bar {K^*} rightarrow {bar K}pi$ in the hadronic medium. The decay widths are computed using a field theoretic model of composite hadrons with quark/antiquark constituents, from the matrix element of the light quark-antiquark pair creation term of the free Dirac Hamiltonian between the initial and final states. The matrix element is multiplied with a coupling strength parameter for the light quark-antiquark pair creation, which is fitted to the observed vacuum decay width of the decay process. There are observed to be substantial modifications of the spectral functions as well as production cross-sections of these vector mesons due to isospin asymmetry as well as strangeness of the hadronic medum at high densities. These studies should have observable consequences, e.g. in the yield of the hidden and open strange mesons arising from the isospin asymmetric high energy heavy ion collisions at the Compressed baryonic matter (CBM) experiments at the future facility at GSI.
We calculate the neutrino production cross-section through the direct URCA process in proto-neutron star matter in the presence of a strong magnetic field. We assume isoentropic conditions and introduce a new equation of state parameter-set in the relativistic mean-field approach that can reproduce neutron stars with $M > 1.96$ M$_odot$ as required by observations. We find that the production process increases the flux of emitted neutrinos along the direction parallel to the magnetic field and decreases the flux in the opposite direction. This means that the neutrino flux asymmetry due to the neutrino absorption and scattering processes in a magnetic field becomes larger by the inclusion of the neutrino production process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا