Do you want to publish a course? Click here

Automatic Estimation of Ice Bottom Surfaces from Radar Imagery

84   0   0.0 ( 0 )
 Added by Mingze Xu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Ground-penetrating radar on planes and satellites now makes it practical to collect 3D observations of the subsurface structure of the polar ice sheets, providing crucial data for understanding and tracking global climate change. But converting these noisy readings into useful observations is generally done by hand, which is impractical at a continental scale. In this paper, we propose a computer vision-based technique for extracting 3D ice-bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first generate a seed surface subject to a set of constraints, and then incorporate additional sources of evidence to refine it via discrete energy minimization. We evaluate the performance of the tracking algorithm on 7 topographic sequences (each with over 3000 radar images) collected from the Canadian Arctic Archipelago with respect to human-labeled ground truth.



rate research

Read More

Understanding the structure of Earths polar ice sheets is important for modeling how global warming will impact polar ice and, in turn, the Earths climate. Ground-penetrating radar is able to collect observations of the internal structure of snow and ice, but the process of manually labeling these observations is slow and laborious. Recent work has developed automatic techniques for finding the boundaries between the ice and the bedrock, but finding internal layers - the subtle boundaries that indicate where one years ice accumulation ended and the next began - is much more challenging because the number of layers varies and the boundaries often merge and split. In this paper, we propose a novel deep neural network for solving a general class of tiered segmentation problems. We then apply it to detecting internal layers in polar ice, evaluating on a large-scale dataset of polar ice radar data with human-labeled annotations as ground truth.
Approximately 2,500 weights and corresponding images of harvested Lates calcarifer (Asian seabass or barramundi) were collected at three different locations in Queensland, Australia. Two instances of the LinkNet-34 segmentation Convolutional Neural Network (CNN) were trained. The first one was trained on 200 manually segmented fish masks with excluded fins and tails. The second was trained on 100 whole-fish masks. The two CNNs were applied to the rest of the images and yielded automatically segmented masks. The one-factor and two-factor simple mathematical weight-from-area models were fitted on 1072 area-weight pairs from the first two locations, where area values were extracted from the automatically segmented masks. When applied to 1,400 test images (from the third location), the one-factor whole-fish mask model achieved the best mean absolute percentage error (MAPE), MAPE=4.36%. Direct weight-from-image regression CNNs were also trained, where the no-fins based CNN performed best on the test images with MAPE=4.28%.
99 - Arnaud Martin 2008
In this chapter, we present two applications in information fusion in order to evaluate the generalized proportional conflict redistribution rule presented in the chapter cite{Martin06a}. Most of the time the combination rules are evaluated only on simple examples. We study here different combination rules and compare them in terms of decision on real data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. Two applications are presented here: a fusion of human experts opinions on the kind of underwater sediments depict on sonar image and a classifier fusion for radar targets recognition.
68 - Roman Solovyev 2020
This paper describes an algorithm for classification of roof materials using aerial photographs. Main advantages of the algorithm are proposed methods to improve prediction accuracy. Proposed methods includes: method of converting ImageNet weights of neural networks for using multi-channel images; special set of features of second level models that are used in addition to specific predictions of neural networks; special set of image augmentations that improve training accuracy. In addition, complete flow for solving this problem is proposed. The following content is available in open access: solution code, weight sets and architecture of the used neural networks. The proposed solution achieved second place in the competition Open AI Caribbean Challenge.
Radar (SAR) images often exhibit profound appearance variations due to a variety of factors including clutter noise produced by the coherent nature of the illumination. Ultrasound images and infrared images have similar cluttered appearance, that make 1 dimensional structures, as edges and object boundaries difficult to locate. Structure information is usually extracted in two steps: first, building and edge strength mask classifying pixels as edge points by hypothesis testing, and secondly estimating from that mask, pixel wide connected edges. With constant false alarm rate (CFAR) edge strength detectors for speckle clutter, the image needs to be scanned by a sliding window composed of several differently oriented splitting sub-windows. The accuracy of edge location for these ratio detectors depends strongly on the orientation of the sub-windows. In this work we propose to transform the edge strength detection problem into a binary segmentation problem in the undecimated wavelet domain, solvable using parallel 1d Hidden Markov Models. For general dependency models, exact estimation of the state map becomes computationally complex, but in our model, exact MAP is feasible. The effectiveness of our approach is demonstrated on simulated noisy real-life natural images with available ground truth, while the strength of our output edge map is measured with Pratts, Baddeley an Kappa proficiency measures. Finally, analysis and experiments on three different types of SAR images, with different polarizations, resolutions and textures, illustrate that the proposed method can detect structure on SAR images effectively, providing a very good start point for active contour methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا