We study string quantum corrections to the ratio of latitude and circular Wilson loops in N=4 super-Yang-Mills theory at strong coupling. Conformal gauge for the corresponding minimal surface in AdS(5)xS(5) is singular and we show that an IR anomaly associated with the divergence in the conformal factor removes previously reported discrepancy with the exact field-theory result. We also carefully check conformal anomaly cancellation and recalculate fluctuation determinants by directly evaluating phaseshifts for all the fluctuation modes.
We revisit the computation of the 1-loop string correction to the latitude minimal surface in $AdS_5 times S^5$ representing 1/4 BPS Wilson loop in planar $cal N$=4 SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the $AdS_2$ minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on $AdS_2$. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and $k$-wound circle.
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on AdS$_5times$S$^5$. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop-amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in $alpha$ not considered before.
In this paper we study the expectation value of deformations of the circular Wilson loop in ${cal N}=4$ super Yang-Mills theory. The leading order deformation, known as the Bremsstrahlung function, can be obtained exactly from supersymmetric localization, so our focus is on deformations at higher orders. We find simple expressions for the expectation values for generic deformations at the quartic order at one-loop at weak coupling and at leading order at strong coupling. We also present a very simple algorithm (not requiring integration) to evaluate the two-loop result. We find that an exact symmetry of the strong coupling sigma-model, known as the spectral-parameter independence, is an approximate symmetry at weak coupling, modifying the expectation value starting only at the sextic order in the deformation. Furthermore, we find very simple patterns for how the spectral parameter can appear in the weak coupling calculation, suggesting all-order structures.
We discuss the string corrections to one-loop amplitudes in AdS$_5times$S$^5$, focussing on their expressions in Mellin space. We present the leading $(alpha)^3$ corrections to the family of correlators $langle mathcal{O}_2 mathcal{O}_2 mathcal{O}_p mathcal{O}_p rangle$ at one loop and begin the exploration of the form of correlators with multiple channels. From these correlators we extract some string corrections to one-loop anomalous dimensions of families of operators of low twist.
We consider the correlation function of a circular Wilson loop with two local scalar operators at generic 4-positions in planar N=4 supersymmetric gauge theory. We show that such correlator is fixed by conformal invariance up to a function of t Hooft coupling and two scalar combinations of the positions invariant under the conformal transformations preserving the circle. We compute this function at leading orders at weak and strong coupling for some simple choices of local BPS operators. We also check that correlators of an infinite line Wilson loop with local operators are the same as those for the circular loop.