We revisit the computation of the 1-loop string correction to the latitude minimal surface in $AdS_5 times S^5$ representing 1/4 BPS Wilson loop in planar $cal N$=4 SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the $AdS_2$ minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on $AdS_2$. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and $k$-wound circle.
In the present paper, which is a sequel to arXiv:1001:4018, we compute the one-loop correction to the energy of pulsating string solutions in AdS_5 x S^5. We show that, as for rigid spinning string elliptic solutions, the fluctuation operators for pulsating solutions can be also put into the single-gap Lame form. A novel aspect of pulsating solutions is that the one-loop correction to their energy is expressed in terms of the stability angles of the quadratic fluctuation operators. We explicitly study the short string limit of the corresponding one-loop energies, demonstrating a certain universality of the form of the energy of small semiclassical strings. Our results may help to shed light on the structure of strong-coupling expansion of anomalous dimensions of dual gauge theory operators.
We study the four point function of the superconformal primary of the stress-tensor multiplet in four dimensional $mathcal{N}=4$ Super Yang Mills, at large t Hooft coupling and in a large $N$ expansion. This observable is holographically dual to four graviton amplitudes in type IIB supergravity on $AdS_5 times S^5$. We construct the most trascendental piece of the correlator at order $N^{-6}$ and compare it with the flat space limit of the corresponding two loops amplitude. This comparison allows us to conjecture structures of the correlator/amplitude which should be present at any loop order.
We study non-planar correlators in ${cal N}=4$ super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order $1/N^4$ and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplitude of type IIB string theory on $AdS_5 times S^5$ in a low energy expansion. Both the loop supergravity result as well as the tower of stringy corrections have a remarkable simple structure in Mellin space, making manifest important properties such as the correct flat space limit and the structure of UV divergences.
We initiate the computation of the 2-loop quantum AdS_5 x S^5 string corrections on the example of a certain string configuration in S^5 related by an analytic continuation to a folded rotating string in AdS_5 in the ``long string limit. The 2-loop term in the energy of the latter should represent the subleading strong-coupling correction to the cusp anomalous dimension and thus provide a further check of recent conjectures about the exact structure of the Bethe ansatz underlying the AdS/CFT duality. We use the conformal gauge and several choices of the kappa-symmetry gauge. While we are unable to verify the cancellation of 2d UV divergences we compute the bosonic contribution to the effective action and also determine the non-trivial finite part of the fermionic contribution. Both the bosonic and the fermionic contributions to the string energy happen to be proportional to the Catalans constant. The resulting value for 2-loop superstring prediction for the subleading coefficient a_2 in the scaling function matches the numerical value found in hep-th/0611135 from the BES equation.
We compute the one-loop world-sheet correction to partition function of $AdS_5 times S^5$ superstring that should be representing $k$-fundamental circular Wilson loop in planar limit. The 2d metric of the minimal surface ending on $k$-wound circle at the boundary is that of a cone of $AdS_2$ with deficit $2pi (1-k)$. We compute determinants of 2d fluctuation operators by first constructing heat kernels of scalar and spinor Laplacians on the cone using the Sommerfeld formula. The final expression for the k-dependent part of the one-loop correction has simple integral representation but is different from earlier results.
V. Forini
,A.A. Tseytlin
,E. Vescovi
.
(2017)
.
"Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in $AdS_5 times S^5$"
.
Edoardo Vescovi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا