No Arabic abstract
We present results from a search for short time-scale white dwarf variability using texttt{gPhoton}, a time-tagged database of textit{GALEX} photon events and associated software package. We conducted a survey of $320$ white dwarf stars in the McCook-Sion catalogue, inspecting each for photometric variability with particular emphasis on variability over time-scales less than $sim 30$ minutes. From that survey, we present the discovery of a new pulsating white dwarf: WD 2246-069. A Ca II K line is found in archival ESO spectra and an IR excess is seen in WISE $W1$ and $W2$ bands. Its independent modes are identified in follow-up optical photometry and used to model its interior structure. Additionally, we detect UV pulsations in four previously known pulsating ZZ Ceti-type (DAVs). Included in this group is the simultaneous fitting of the pulsations of WD 1401-147 in optical, near-ultraviolet and far-ultraviolet bands using nearly concurrent Whole Earth Telescope and textit{GALEX} data, providing observational insight into the wavelength dependence of white dwarf pulsation amplitudes.
We present the results of our survey searching for new white dwarf pulsators for observations by the TESS space telescope. We collected photometric time-series data on 14 white dwarf variable-candidates at Konkoly Observatory, and found two new bright ZZ Ceti stars, namely EGGR 120 and WD 1310+583. We performed the Fourier-analysis of the datasets. In the case of EGGR 120, which was observed on one night only, we found one significant frequency at 1332 microHz with 2.3 mmag amplitude. We successfully observed WD 1310+583 on eight nights, and determined 17 significant frequencies by the whole dataset. Seven of them seem to be independent pulsation modes between 634 and 2740 microHz, and we performed preliminary asteroseismic investigations of the star utilizing six of these periods. We also identified three new light variables on the fields of white dwarf candidates: an eclipsing binary, a candidate delta Scuti/beta Cephei and a candidate W UMa-type star.
This work brings a wavelet analysis for 14 Kepler white dwarf stars, in order to confirm their photometric variability behavior and to search for periodicities in these targets. From the observed Kepler light curves we obtained the wavelet local and global power spectra. Through this procedure, one can perform an analysis in time-frequency domain rich in details, and so to obtain a new perspective on the time evolution of the periodicities present in these stars. We identified a photometric variability behavior in ten white dwarfs, corresponding to period variations of ~ 2 h to 18 days: among these stars, three are new candidates and seven, earlier identified from other studies, are confirmed.
Pulsation frequencies reveal the interior structures of white dwarf stars, shedding light on the properties of these compact objects that represent the final evolutionary stage of most stars. Two-minute cadence photometry from TESS will record pulsation signatures from bright white dwarfs over the entire sky. We aim to demonstrate the sensitivity of TESS data to measuring pulsations of helium-atmosphere white dwarfs in the DBV instability strip, and what asteroseismic analysis of these measurements can constrain about their stellar structures. We present a case study of the pulsating DBV WD 0158$-$160 that was observed as TIC 257459955 with the 2-minute cadence for 20.3 days in TESS Sector 3. We measure the frequencies of variability of TIC 257459955 with an iterative periodogram and prewhitening procedure. The measured frequencies are compared to calculations from two sets of white dwarf models to constrain the stellar parameters: the fully evolutionary models from LPCODE, and the structural models from WDEC. We detect and measure the frequencies of nine pulsation modes and eleven combination frequencies of WD 0158$-$160 to $sim0.01 mu$Hz precision. Most, if not all, of the observed pulsations belong to an incomplete sequence of dipole ($ell=1$) modes with a mean period spacing of $38.1pm1.0$ s. The global best-fit seismic models from both codes have effective temperatures that are $gtrsim3000$ K hotter than archival spectroscopic values of $24{,}100-25{,}500$ K; however, cooler secondary solutions are found that are consistent with both the spectroscopic effective temperature and distance constraints from Gaia astrometry.
We analyze time-series spectroscopy of the white dwarf merger candidate J005311 and confirm the unique nature of its optical spectrum. We detect an additional broad emission feature peaking at 343nm that was predicted in the Gvaramadze et al. (2019; arXiv:1904.00012) models. Comparing ten spectra taken with the Large Binocular Telescope (LBT), we find significant variability in the profile of the strong OVI 381.1/383.4nm emission feature. This appears to be caused by rapidly shifting subpeaks generated by clumpiness in the stellar wind of J005311. This line variability is similar to what is seen in many Wolf-Rayet stars. However, in J005311, the rate of motion of the subpeaks appears exceedingly high as they can reach 16000 km/s in less than two hours.
White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.