Do you want to publish a course? Click here

Spectral Statistics for an Anderson Model with sporadic potentials

85   0   0.0 ( 0 )
 Added by Werner Kirsch
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we consider an Anderson model with a large number of sites with zero interaction. For such models we study the spectral statistics in the region of complete localization. We show that Poisson statistics holds for such energies, by proving the Minami estimate.



rate research

Read More

195 - John Z. Imbrie 2017
We prove localization and probabilistic bounds on the minimum level spacing for the Anderson tight-binding model on the lattice in any dimension, with single-site potential having a discrete distribution taking N values, with N large.
An analytic definition of a $mathbb{Z}_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through $0$ along the path. The $mathbb{Z}_2$-valued spectral flow is shown to satisfy a concatenation property and homotopy invariance, and it provides an isomorphism on the fundamental group of the real skew-adjoint Fredholm operators. Moreover, it is connected to a $mathbb{Z}_2$-index pairing for suitable paths. Applications concern the zero energy bound states at defects in a Majorana chain and a spectral flow interpretation for the $mathbb{Z}_2$-polarization in these models.
In 1964 J. M. Luttinger introduced a model for the quantum thermal transport. In this paper we study the spectral theory of the Hamiltonian operator associated to the Luttingers model, with a special focus at the one-dimensional case. It is shown that the (so called) thermal Hamiltonian has a one-parameter family of self-adjoint extensions and the spectrum, the time-propagator group and the Green function are explicitly computed. Moreover, the scattering by convolution-type potentials is analyzed. Finally, also the associated classical problem is completely solved, thus providing a comparison between classical and quantum behavior. This article aims to be a first contribution in the construction of a complete theory for the thermal Hamiltonian.
A new characterization of the singular packing subspaces of general bounded self-adjoint operators is presented, which is used to show that the set of operators whose spectral measures have upper packing dimension equal to one is a $G_delta$ (in suitable metric spaces). As an application, it is proven that, generically (in space of continuous sampling functions), spectral measures of the limit-periodic Schrodinger operators have upper packing dimensions equal to one. Consequently, in a generic set, these operators are quasiballistic.
We apply Feshbach-Krein-Schur renormalization techniques in the hierarchical Anderson model to establish a criterion on the single-site distribution which ensures exponential dynamical localization as well as positive inverse participation ratios and Poisson statistics of eigenvalues. Our criterion applies to all cases of exponentially decaying hierarchical hopping strengths and holds even for spectral dimension $d > 2$, which corresponds to the regime of transience of the underlying hierarchical random walk. This challenges recent numerical findings that the spectral dimension is significant as far as the Anderson transition is concerned.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا