Do you want to publish a course? Click here

Spectral flow for real skew-adjoint Fredholm operators

145   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An analytic definition of a $mathbb{Z}_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through $0$ along the path. The $mathbb{Z}_2$-valued spectral flow is shown to satisfy a concatenation property and homotopy invariance, and it provides an isomorphism on the fundamental group of the real skew-adjoint Fredholm operators. Moreover, it is connected to a $mathbb{Z}_2$-index pairing for suitable paths. Applications concern the zero energy bound states at defects in a Majorana chain and a spectral flow interpretation for the $mathbb{Z}_2$-polarization in these models.



rate research

Read More

In this article we give a comprehensive treatment of a `Clifford module flow along paths in the skew-adjoint Fredholm operators on a real Hilbert space that takes values in KO${}_{*}(mathbb{R})$ via the Clifford index of Atiyah-Bott-Shapiro. We develop its properties for both bounded and unbounded skew-adjoint operators including an axiomatic characterization. Our constructions and approach are motivated by the principle that [ text{spectral flow} = text{Fredholm index}. ] That is, we show how the KO--valued spectral flow relates to a KO-valued index by proving a Robbin-Salamon type result. The Kasparov product is also used to establish a spectral flow $=$ Fredholm index result at the level of bivariant K-theory. We explain how our results incorporate previous applications of $mathbb{Z}/ 2mathbb{Z}$-valued spectral flow in the study of topological phases of matter.
Quantum dynamical lower bounds for continuous and discrete one-dimensional Dirac operators are established in terms of transfer matrices. Then such results are applied to various models, including the Bernoulli-Dirac one and, in contrast to the discrete case, critical energies are also found for the continuous Dirac case with positive mass.
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for the SOP and for their Cauchy transforms, given as expectation values of traces and determinants or their inverses, respectively. Our proof uses the fact that the joint probability distribution function for all combinations of real eigenvalues and complex conjugate eigenvalue pairs can be written as a product. Examples for the SOP are given in terms of Laguerre polynomials for the chiral ensemble (also called the non-Hermitian real Wishart-Laguerre ensemble), both without and with the insertion of characteristic polynomials. Such characteristic polynomials play the role of mass terms in applications to complex Dirac spectra in field theory. In addition, for the elliptic real Ginibre ensemble we recover the SOP of Forrester and Nagao in terms of Hermite polynomials.
Real index pairings of projections and unitaries on a separable Hilbert space with a real structure are defined when the projections and unitaries fulfill symmetry relations invoking the real structure, namely projections can be real, quaternionic, even or odd Lagrangian and unitaries can be real, quaternionic, symmetric or anti-symmetric. There are $64$ such real index pairings of real $K$-theory with real $K$-homology. For $16$ of them, the Noether index of the pairing vanishes, but there is a secondary $mathbb{Z}_2$-valued invariant. The first set of results provides index formulas expressing each of these $16$ $mathbb{Z}_2$-valued pairings as either an orientation flow or a half-spectral flow. The second and main set of results constructs the skew localizer for a pairing stemming from a Fredholm module and shows that the $mathbb{Z}_2$-invariant can be computed as the sign of its Pfaffian and in $8$ of the cases as the sign of the determinant of its off-diagonal entry. This is of relevance for the numerical computation of invariants of topological insulators.
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi-classical approach, which results in substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including superexponential ones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا