No Arabic abstract
Fermi has detected over 200 pulsars above 100 MeV. In a previous work, using 3 years of LAT data (1FHL catalog) we reported that 28 of these pulsars show emission above 10 GeV; only three of these, however, were millisecond pulsars (MSPs). The recently-released Third Catalog of Hard Fermi-LAT Sources (3FHL) contains over 1500 sources showing emission above 10 GeV, 17 of which are associated with gamma-ray MSPs. Using three times as much data as in our previous study (1FHL), we report on a systematic analysis of these pulsars to determine the highest energy (pulsed) emission fromMSPs and discuss the best possible candidates for follow-up observations with ground-based TeV instruments (H.E.S.S., MAGIC, VERITAS, and the upcoming CTA).
This chapter provides a phenomenological appraisal of the high-energy emission of millisecond pulsars. We comment on some of their properties as a population, as well as consider the especial cases of transitional pulsars, other redbacks, and black widow systems.
Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly $pm$20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregate emission from a large number of faint millisecond pulsars (MSPs). The electrons and positrons ($e^pm$) injected by this population could produce detectable inverse-Compton (IC) emissions by up-scattering ambient photons to gamma-ray energies. In this work, we calculate such IC emissions using GALPROP. A triaxial three-dimensional model of the bulge stars obtained from a fit to infrared data is used as a tracer of the putative MSP population. This model is compared against one in which the MSPs are spatially distributed as a Navarro-Frenk-White squared profile. We show that the resulting spectra for both models are indistinguishable, but that their spatial morphologies have salient recognizable features. The IC component above $sim$TeV energies carries information on the spatial morphology of the injected $e^pm$. Such differences could potentially be used by future high-energy gamma-ray detectors such as the Cherenkov Telescope Array to provide a viable multiwavelength handle for the MSP origin of the GeV excess.
The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 GeV, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, refinements, and extensions to radiation models and magnetic field structures, and the implementation of new radiation mechanisms. This will assist us in understanding the VHE emission detected from the Crab pulsar, and predicting the level of VHE emission expected from other pulsars, which is very important for the upcoming CTA.
Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II) or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.
Low energy X-ray emission (0.1-10 keV) from all six millisecond radio pulsars (MSPs) for which such emission has been reported support a proposed pulsar magnetic field evolution previously compared only to radiopulse data: old, very strongly spun-up neutron stars become mainly orthogonal rotators (magnetic dipole moment perpendicular to stellar spin) or aligned rotators. The neutron star properties which lead to such evolution are reviewed. Special consideration is given to agreement between predictions and observed X-ray emission for the aligned MSP candidate PSR J0437-4715.