Do you want to publish a course? Click here

Synthesis, characterization and physical properties of layered bismuthide PtBi$_2$

75   0   0.0 ( 0 )
 Added by Xiaofeng Xu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report details of single crystal growth of stoichiometric bismuthide PtBi$_2$ whose structure consists of alternate stacking of Pt layer sandwiched by Bi bilayer along the $c$-axis. The compound crystallizes in space group P-3 with a hexagonal unit cell of $a$=$b$=6.553$AA$, $c$=6.165$AA$. The magnetization data show opposite sign for fields parallel and perpendicular to the Pt layers, respectively. The $T$-dependent resistivity is typical of a metal and the magnetic response shows clear two types of charge carriers and the validity of the semi-classical Kohlers rule. Its physical properties was discussed in comparison with recently proposed topological superconductor $beta$-PdBi$_2$.



rate research

Read More

We report the synthesis and basic physical properties of single crystals of CaFe2As2, an isostructural compound to BaFe2As2 which has been recently doped to produce superconductivity. CaFe2As2 crystalizes in the ThCr2Si2 structure with lattice parameters a = 3.907(4) A and c = 11.69(2) A. Magnetic susceptibility, resistivity, and heat capacity all show a first order phase transition at T_0 171 K. The magnetic susceptibility is nearly isotropic from 2 K to 350 K. The heat capacity data gives a Sommerfeld coefficient of 8.2 +- 0.3 mJ/molK2, and does not reveal any evidence for the presence of high frequency (> 300 K) optical phonon modes. The Hall coefficient is negative below the transition indicating dominant n-type carriers.
We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.412(1) {AA}, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ~ 20 {AA}). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.
We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline structures, respectively. CeRu$_2$As$_2$ shows localized long-range antiferromagnetic ordering below $T_N$=4.3 K, with a moderate electronic Sommerfeld coefficient $gamma_0$=35 mJ/mol$cdot$K$^2$. A field-induced metamagnetic transition is observed near 2 T below $T_N$. Magnetic susceptibility measurements on aligned CeRu$_2$As$_2$ powders suggest that it has an easy axis and that the cerium moments align uniaxially along $mathbf{c}$ axis. In contrast, CeIr$_2$As$_2$ is a magnetically nonordered heavy-fermion metal with enhanced $gamma_0$$>$300 mJ/mol$cdot$K$^2$. The initial onset Kondo temperatures of the two compounds are respectively 6 K and 30 K. We discuss the role of the crystal structure to the strength of Kondo coupling. This work provides two new dense Kondo-lattice materials for further investigations on electronic correlation, quantum criticality and heavy-electron effects.
Since the discovery of superconductivity in LaFePO in 2006, numerous iron-based superconductors have been identified within diverse structure families, all of which combine iron with a group-V (pnictogen) or group-VI (chalco- gen) element. Unconventional superconductivity is extremely rare among transition metal compounds outside these layered iron systems and the cuprates, and it is almost universally associated with highly anisotropic electronic properties and nearly 2D Fermi surface geometries. The iron-based intermetallic YFe$_2$Ge$_2$ features a 3D Fermi surface and a strongly enhanced low temperature heat capacity, which signals strong electronic correlations. We present data from a new generation of high quality samples of YFe$_2$Ge$_2$, which show superconducting transition anomalies below 1.8 K in thermodynamic as well as transport measurements, establishing that superconductivity is intrinsic in this layered iron compound outside the known superconducting iron pnictide or chalcogenide families. The Fermi surface geometry of YFe$_2$Ge$_2$ resembles that of KFe$_2$As$_2$ in the high pressure collapsed tetragonal phase, in which superconductivity at temperatures as high as 10 K has recently been reported, suggesting an underlying connection between the two systems.
168 - Y. J. Yan , P. Cheng , J. J. Ying 2012
We report the structural, magnetic and electronic transport properties of SrFe$_{2-x}$Cu$_x$As$_2$ single crystals grown by self-flux technique. SrCu$_2$As$_2$ and SrFe$_2$As$_2$ both crystallize in ThCr$_2$Si$_2$-type (122-type) structure at room temperature, but exhibit distinct magnetic and electronic transport properties. The x-ray photoelectron spectroscopy(XPS) Cu-2p core line position, resistivity, susceptibility and positive Hall coefficient indicate that SrCu$_2$As$_2$ is an sp-band metal with Cu in the 3d$^{10}$ electronic configuration corresponding to the valence state Cu$^{1+}$. The almost unchanged Cu-2p core line position in SrFe$_{2-x}$Cu$_x$As$_2$ compared with SrCu$_2$As$_2$ indicates that partial Cu substitutions for Fe in SrFe$_2$As$_2$ may result in hole doping rather than the expected electron doping. No superconductivity is induced by Cu substitution on Fe sites, even though the structural/spin density wave(SDW) transition is gradually suppressed with increasing Cu doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا