Do you want to publish a course? Click here

Local corrugation and persistent charge density wave in ZrTe3 with Ni intercalation

143   0   0.0 ( 0 )
 Added by Moritz Hoesch
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mechanism of emergent bulk superconductivity in transition metal intercalated ZrTe3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni0.01ZrTe3 to Ni0.05ZrTe3. In the highest doped samples bulk superconductivity with Tc < TCDW is observed, while TCDW is strongly reduced. Relativistic ab-initio calculations reveal Ni incorporation occurs preferentially through intercalation in the van-der-Waals gap. Analysis of the structural and elec- tronic effects of intercalation, indicate buckling of the Te-sheets adjacent to the Ni site akin to a locally stabilised CDW-like lattice distortion. Experiments by low temperature x-ray diffraction, angle-resolved-photoemission spectroscopy (ARPES) as well as temperature dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced on Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in NixZrTe3.



rate research

Read More

113 - C. S. Yadav , P. L. Paulose 2012
We report the superconductivity at enhanced temperature of 5.2 K in the polycrystalline sample of ZrTe3 and Ni intercalated ZrTe3. ZrTe3 is a Charge Density Wave (T = 63K) compound, which is known to superconduct only below 2K in single crystalline form. We discuss that the intergrain strains in the polycrystalline samples induces an intrinsic pressure and thus enhances the transition temperature. Fe intercalation of ZrTe3 kills both the charge density wave and superconducting states, gives rise to the magnetic ordering in the compound.
91 - X. M. Chen , C. Mazzoli , Y. Cao 2018
Although charge density wave (CDW) correlations appear to be a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for coupling or pinning of the CDW to lattice deformations and disorder. While diffraction intensities can demonstrate the occurrence of CDW domain formation, the lack of scattering phase information has limited our understanding of this process. Here, we report coherent resonant x-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition results in equivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to temperatures well above that transition. That memory is only lost on cycling across the transition at 240(3) K that restores the four-fold symmetry of the copper-oxide planes. We infer that the structural-domain twinning pattern that develops below 240 K determines the CDW pinning landscape below 54 K. These results open a new view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.
100 - S. Cui , L. P. He , X. C. Hong 2016
Recently it was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe$_3$. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe$_{3-x}$Se$_x$ near $x approx$ 0.04. To elucidate its superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe$_{3-x}$Se$_x$ single crystals ($x$ = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term $kappa_0/T$ at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of $kappa_0/T$ manifests multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe$_{3-x}$Se$_x$, which indicates conventional superconductivity despite of the existence of a CDW QCP.
Impurity pinning has long been discussed to have a profound effect on the dynamics of an incommensurate charge density wave (CDW), which would otherwise slide through the lattice without resistance. Here we visualize the impurity pinning evolution of the CDW in ZrTe3 using the variable temperature scanning tunneling microscopy (STM). At low temperatures, we observe a quasi-1D incommensurate CDW modulation moderately correlated to the impurity positions, indicating a weak impurity pinning. As we raise the sample temperature, the CDW modulation gets progressively weakened and distorted, while the correlation with the impurities becomes stronger. Above the CDW transition temperature, short-range modulations persist with the phase almost all pinned by impurities. The evolution from weak to strong impurity pinning through the CDW transition can be understood as a result of losing phase rigidity.
102 - C. S. Yadav , P. L. Paulose 2012
We report the occurrence of superconductivity in polycrystalline samples of ZrTe3 at 5.2 K temperature at ambient pressure. The superconducting state coexists with the charge density wave (CDW) phase, which sets in at 63K. The intercalation of Cu or Ag, does not have any bearing on the superconducting transition temperature but suppresses the CDW state. The feature of CDW anomaly in these compounds is clearly seen in the DC magnetization data. Resistivity data is analysed to estimate the relative loss of carriers and reduction in the nested Fermi surface area upon CDW formation in the ZrTe3 and the intercalated compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا