Do you want to publish a course? Click here

Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex

101   0   0.0 ( 0 )
 Added by Shiyan Li
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently it was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe$_3$. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe$_{3-x}$Se$_x$ near $x approx$ 0.04. To elucidate its superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe$_{3-x}$Se$_x$ single crystals ($x$ = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term $kappa_0/T$ at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of $kappa_0/T$ manifests multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe$_{3-x}$Se$_x$, which indicates conventional superconductivity despite of the existence of a CDW QCP.



rate research

Read More

313 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/Mott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
We study the properties of $s$-wave superconductivity induced around a nematic quantum critical point in two-dimensional metals. The strong Landau damping and the Cooper pairing between incoherent fermions have dramatic mutual influence on each other, and hence should be treated on an equal footing. This problem is addressed by analyzing the self-consistent Dyson-Schwinger equations for the superconducting gap and Landau damping rate. We solve the equations at zero temperature without making any linearization, and show that the superconducting gap is maximized at the quantum critical point and decreases rapidly as the system departs from this point. The interplay between nematic fluctuation and an additional pairing interaction, caused by phonon or other boson mode, is also investigated. The total superconducting gap generated by such interplay can be several times larger than the direct sum of the gaps separately induced by these two pairing interactions. This provides a promising way to achieve remarkable enhancement of superconductivity.
94 - F. H. Yu , D. H. Ma , W. Z. Zhuo 2021
Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K, Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1~0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2~2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.
139 - T. Shang , W. Xie , J. Z. Zhao 2021
We report a comprehensive study of the centrosymmetric Re$_3$B and noncentrosymmetric Re$_7$B$_3$ superconductors. At a macroscopic level, their bulk superconductivity (SC), with $T_c$ = 5.1 K (Re$_3$B) and 3.3 K (Re$_7$B$_3$), was characterized via electrical-resistivity, magnetization, and heat-capacity measurements, while their microscopic superconducting properties were investigated by means of muon-spin rotation/relaxation ($mu$SR). In both Re$_3$B and Re$_7$B$_3$ the low-$T$ zero-field electronic specific heat and the superfluid density (determined via tranverse-field $mu$SR) suggest a nodeless SC. Both compounds exhibit some features of multigap SC, as evidenced by temperature-dependent upper critical fields $H_mathrm{c2}(T)$, as well as by electronic band-structure calculations. The absence of spontaneous magnetic fields below the onset of SC, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of both Re$_3$B and Re$_7$B$_3$. Our results suggest that a lack of inversion symmetry and the accompanying antisymmetric spin-orbit coupling effects are not essential for the occurrence of multigap SC in these rhenium-boron compounds.
86 - D. Bhoi , S. Khim , W. Nam 2016
2$H$-TaSe$_2$ has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-$T$ is sequentially followed by an incommensurate charge density wave (ICDW) state at $approx$ 122 K and a commensurate charge density wave (CCDW) state at $approx$ 90 K, and superconductivity at $T_{rm{C}}sim$0.14 K. Upon systematic intercalation of Pd ions into TaSe$_2$, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at $x$$sim$0.09-0.10. Moreover, $T_{rm{C}}$ shows a dramatic enhancement up to 3.3 K at $x$ = 0.08, $sim$24 times of $T_{rm{C}}$ in 2$H$-TaSe$_2$, in proportional to the density of states $N(E_F)$. Investigations of upper critical fields $H_{c2}$ in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor $gamma_H$ = $H_{c2}^{ab}$/$H_{c2}^{c}$, quasi-linear increase of $H_{c2}^{c}(T)$, and an upward, positive-curvature in $H_{c2}^{ab}(T)$ near $T_{rm{C}}$. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs $x$, we propose that the increase of $N(E_F)$ and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of $T_{rm{C}}$ in Pd$_x$TaSe$_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا