Do you want to publish a course? Click here

Unsupervised Machine Learning on a Hybrid Quantum Computer

239   0   0.0 ( 0 )
 Added by Marcus Silva
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Machine learning techniques have led to broad adoption of a statistical model of computing. The statistical distributions natively available on quantum processors are a superset of those available classically. Harnessing this attribute has the potential to accelerate or otherwise improve machine learning relative to purely classical performance. A key challenge toward that goal is learning to hybridize classical computing resources and traditional learning techniques with the emerging capabilities of general purpose quantum processors. Here, we demonstrate such hybridization by training a 19-qubit gate model processor to solve a clustering problem, a foundational challenge in unsupervised learning. We use the quantum approximate optimization algorithm in conjunction with a gradient-free Bayesian optimization to train the quantum machine. This quantum/classical hybrid algorithm shows robustness to realistic noise, and we find evidence that classical optimization can be used to train around both coherent and incoherent imperfections.



rate research

Read More

149 - X.-D. Cai , D. Wu , Z.-E. Su 2014
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing big data could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] was proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of 2-, 4-, and 8-dimensional vectors to different clusters using a small-scale photonic quantum computer, which is then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can in principle be scaled to a larger number of qubits, and may provide a new route to accelerate machine learning.
98 - Dan-Bo Zhang , Shi-Liang Zhu , 2018
Incorporating nonlinearity into quantum machine learning is essential for learning a complicated input-output mapping. We here propose quantum algorithms for nonlinear regression, where nonlinearity is introduced with feature maps when loading classical data into quantum states. Our implementation is based on a hybrid quantum computer, exploiting both discrete and continuous variables, for their capacity to encode novel features and efficiency of processing information. We propose encoding schemes that can realize well-known polynomial and Gaussian kernel ridge regressions, with exponentially speed-up regarding to the number of samples.
One of the most promising applications of quantum computing is simulating quantum many-body systems. However, there is still a need for methods to efficiently investigate these systems in a native way, capturing their full complexity. Here, we propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation. The algorithm is used to extract the phase diagram of a system with no prior physical knowledge and can be performed end-to-end on the same quantum device that the system is simulated on. We showcase its capabilities by mapping out the phase diagram of the one-dimensional extended Bose Hubbard model with dimerized hoppings, which exhibits a symmetry protected topological phase. Further, we show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
Current implementations of quantum logic gates can be highly faulty and introduce errors. In order to correct these errors, it is necessary to first identify the faulty gates. We demonstrate a procedure to diagnose where gate faults occur in a circuit by using a hybridized quantum-and-classical K-Nearest-Neighbors (KNN) machine-learning technique. We accomplish this task using a diagnostic circuit and selected input qubits to obtain the fidelity between a set of output states and reference states. The outcomes of the circuit can then be stored to be used for a classical KNN algorithm. We numerically demonstrate an ability to locate a faulty gate in circuits with over 30 gates and up to nine qubits with over 90% accuracy.
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking thermal noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasi-degenerate ground states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا