No Arabic abstract
We revisit the study of the multiplets of the conformal algebra in any dimension. The theory of highest weight representations is reviewed in the context of the Bernstein-Gelfand-Gelfand category of modules. The Kazhdan-Lusztig polynomials code the relation between the Verma modules and the irreducible modules in the category and are the key to the characters of the conformal multiplets (whether finite dimensional, infinite dimensional, unitary or non-unitary). We discuss the representation theory and review in full generality which representations are unitarizable. The mathematical theory that allows for both the general treatment of characters and the full analysis of unitarity is made accessible. A good understanding of the mathematics of conformal multiplets renders the treatment of all highest weight representations in any dimension uniform, and provides an overarching comprehension of case-by-case results. Unitary highest weight representations and their characters are classified and computed in terms of data associated to cosets of the Weyl group of the conformal algebra. An executive summary is provided, as well as look-up tables up to and including rank four.
The Demazure character formula is applied to the Verlinde formula for affine fusion rules. We follow Littelmanns derivation of a generalized Littlewood-Richardson rule from Demazure characters. A combinatorial rule for affine fusions does not result, however. Only a modified version of the Littlewood-Richardson rule is obtained that computes an (old) upper bound on the fusion coefficients of affine $A_r$ algebras. We argue that this is because the characters of simple Lie algebras appear in this treatment, instead of the corresponding affine characters. The Bruhat order on the affine Weyl group must be implicated in any combinatorial rule for affine fusions; the Bruhat order on subgroups of this group (such as the finite Weyl group) does not suffice.
Various observables in compact CFTs are required to obey positivity, discreteness, and integrality. Positivity forms the crux of the conformal bootstrap, but understanding of the abstract implications of discreteness and integrality for the space of CFTs is lacking. We systematically study these constraints in two-dimensional, non-holomorphic CFTs, making use of two main mathematical results. First, we prove a theorem constraining the behavior near the cusp of integral, vector-valued modular functions. Second, we explicitly construct non-factorizable, non-holomorphic cuspidal functions satisfying discreteness and integrality, and prove the non-existence of such functions once positivity is added. Application of these results yields several bootstrap-type bounds on OPE data of both rational and irrational CFTs, including some powerful bounds for theories with conformal manifolds, as well as insights into questions of spectral determinacy. We prove that in rational CFT, the spectrum of operator twists $tgeq {c over 12}$ is uniquely determined by its complement. Likewise, we argue that in generic CFTs, the spectrum of operator dimensions $Delta > {c-1over 12}$ is uniquely determined by its complement, absent fine-tuning in a sense we articulate. Finally, we discuss implications for black hole physics and the (non-)uniqueness of a possible ensemble interpretation of AdS$_3$ gravity.
We construct various boundary states in the coset conformal field theory G/H. The G/H theory admits the twisted boundary condition if the G theory has an outer automorphism of the horizontal subalgebra that induces an automorphism of the H theory. By introducing the notion of the brane identification and the brane selection rule, we show that the twisted boundary states of the G/H theory can be constructed from those of the G and the H theories. We apply our construction to the su(n) diagonal cosets and the su(2)/u(1) parafermion theory to obtain the twisted boundary states of these theories.
We give some higher dimensional analogues of the Durfee square formula and point out their relation to dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms of Universal Chiral Partition Functions.
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even though the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).