Do you want to publish a course? Click here

Multipartitions, Generalized Durfee Squares and Affine Lie Algebra Characters

83   0   0.0 ( 0 )
 Added by Peter Bouwknegt
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We give some higher dimensional analogues of the Durfee square formula and point out their relation to dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms of Universal Chiral Partition Functions.



rate research

Read More

72 - M.A. Walton 1996
The Demazure character formula is applied to the Verlinde formula for affine fusion rules. We follow Littelmanns derivation of a generalized Littlewood-Richardson rule from Demazure characters. A combinatorial rule for affine fusions does not result, however. Only a modified version of the Littlewood-Richardson rule is obtained that computes an (old) upper bound on the fusion coefficients of affine $A_r$ algebras. We argue that this is because the characters of simple Lie algebras appear in this treatment, instead of the corresponding affine characters. The Bruhat order on the affine Weyl group must be implicated in any combinatorial rule for affine fusions; the Bruhat order on subgroups of this group (such as the finite Weyl group) does not suffice.
182 - Ryosuke Kodera 2009
We calculate the first extension groups for finite-dimensional simple modules over an arbitrary generalized current Lie algebra, which includes the case of loop Lie algebras and their multivariable analogs.
The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for $su(3)_k (k=3,5)$ are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of $su(3)_k$. We point out that the generalized fusion algebra is non-commutative if G is non-abelian and provide some examples for $G = S_3$. Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra.
253 - Chun-Ju Lai 2013
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
172 - Jie Xiao , Han Xu , Minghui Zhao 2021
For quantum group of affine type, Lusztig gave an explicit construction of the affine canonical basis by simple perverse sheaves. In this paper, we construct a bar-invariant basis by using a PBW basis arising from representations of the corresponding tame quiver. We prove that this bar-invariant basis coincides with Lusztigs canonical basis and obtain a concrete bijection between the elements in theses two bases. The index set of these bases is listed orderly by modules in preprojective, regular non-homogeneous, preinjective components and irreducible characters of symmetric groups. Our results are based on the work of Lin-Xiao-Zhang and closely related with the work of Beck-Nakajima. A crucial method in our construction is a generalization of that by Deng-Du-Xiao.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا