No Arabic abstract
We present the first high significance detection ($4.1sigma$) of the Baryon Acoustic Oscillations (BAO) feature in the galaxy bispectrum of the twelfth data release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample ($0.43 leq z leq 0.7$). We measured the scale dilation parameter, $alpha$, using the power spectrum, bispectrum, and both simultaneously for DR12, plus 2048 MultiDark-PATCHY mocks in the North and South Galactic Caps (NGC and SGC, respectively), and the volume weighted averages of those two samples (N+SGC). The fitting to the mocks validated our analysis pipeline, yielding values consistent with the mock cosmology. By fitting to the power spectrum and bispectrum separately, we tested the robustness of our results, finding consistent values from the NGC, SGC and N+SGC in all cases. We found $D_{mathrm{V}} = 2032 pm 24 (mathrm{stat.}) pm 15 (mathrm{sys.})$ Mpc, $D_{mathrm{V}} = 2038 pm 55 (mathrm{stat.}) pm 15 (mathrm{sys.})$ Mpc, and $D_{mathrm{V}} = 2031 pm 22 (mathrm{stat.}) pm 10 (mathrm{sys.})$ Mpc from the N+SGC power spectrum, bispectrum and simultaneous fitting, respectively.
We apply the Alcock-Paczynski (AP) test to the stacked voids identified using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We also use 1000 mock galaxy catalogs that match the geometry, density, and clustering properties of the BOSS sample in order to characterize the statistical uncertainties of our measurements and take into account systematic errors such as redshift space distortions. For both BOSS data and mock catalogs, we use the ZOBOV algorithm to identify voids, we stack together all voids with effective radii of 30-100Mpc/h in the redshift range 0.43-0.7, and we accurately measure the shape of the stacked voids. Our tests with the mock catalogs show that we measure the stacked void ellipticity with a statistical precision of 2.6%. We find that the stacked voids in redshift space are slightly squashed along the line of sight, which is consistent with previous studies. We repeat this measurement of stacked void shape in the BOSS data assuming several values of Omega_m within the flat LCDM model, and we compare to the mock catalogs in redshift space in order to perform the AP test. We obtain a constraint of $Omega_m = 0.38^{+0.18}_{-0.15}$ at the 68% confidence level from the AP test. We discuss the various sources of statistical and systematic noise that affect the constraining power of this method. In particular, we find that the measured ellipticity of stacked voids scales more weakly with cosmology than the standard AP prediction, leading to significantly weaker constraints. We discuss how AP constraints will improve in future surveys with larger volumes and densities.
[abridged] We present an anisotropic analysis of the baryonic acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryonic Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains contains 361 762 galaxies with an effective redshift of $z_{rm LOWZ}=0.32$; the CMASS sample consists of 777 202 galaxies with an effective redshift of $z_{rm CMASS}=0.57$. We extract the BAO peak position from the monopole power spectrum moment, $alpha_0$, and from the $mu^2$ moment, $alpha_2$, where $mu$ is the cosine of the angle to the line-of-sight. The $mu^2$-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and $mu^2$-moment, which are related to radial and angular shifts in scale. We report $H(z_{rm LOWZ})r_s(z_d)=(11.60pm0.60)cdot10^3 {rm km}s^{-1}$ and $D_A(z_{rm LOWZ})/r_s(z_d)=6.66pm0.16$ with a cross-correlation coefficient of $r_{HD_A}=0.41$, for the LOWZ sample; and $H(z_{rm CMASS})r_s(z_d)=(14.56pm0.37)cdot10^3 {rm km}s^{-1}$ and $D_A(z_{rm CMASS})/r_s(z_d)=9.42pm0.13$ with a cross-correlation coefficient of $r_{HD_A}=0.47$, for the CMASS sample. We combine these results with the measurements of the BAO peak position in the monopole and quadrupole correlation function of the same dataset citep[][companion paper]{Cuestaetal2015} and report the consensus values: $H(z_{rm LOWZ})r_s(z_d)=(11.63pm0.69)cdot10^3 {rm km}s^{-1}$ and $D_A(z_{rm LOWZ})/r_s(z_d)=6.67pm0.15$ with $r_{HD_A}=0.35$ for the LOWZ sample; $H(z_{rm CMASS})r_s(z_d)=(14.67pm0.42)cdot10^3 {rm km}s^{-1}$ and $D_A(z_{rm CMASS})/r_s(z_d)=9.47pm0.12$ with $r_{HD_A}=0.52$ for the CMASS sample.
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line-of-sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12 (DR12). The LOWZ sample contains 361,762 galaxies with an effective redshift of $z_{rm lowz}=0.32$, and the CMASS sample 777,202 galaxies with an effective redshift of $z_{rm cmass}=0.57$. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter $f$ times the amplitude of dark matter density fluctuations $sigma_8$ by modeling the Redshift-Space Distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on $fsigma_8$, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon $D_A(z)/r_s(z_d)$. We find $f(z_{rm lowz})sigma_8(z_{rm lowz})=0.394pm0.062$, $D_A(z_{rm lowz})/r_s(z_d)=6.35pm0.19$, $H(z_{rm lowz})r_s(z_d)=(11.41pm 0.56),{10^3rm km}s^{-1}$ for the LOWZ sample, and $f(z_{rm cmass})sigma_8(z_{rm cmass})=0.444pm0.038$, $D_A(z_{rm cmass})/r_s(z_d)=9.42pm0.15$, $H(z_{rm cmass})r_s(z_d)=(13.92 pm 0.44), {10^3rm km}s^{-1}$ for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial $Lambda$CDM values, we find $f(z_{rm lowz})sigma_8(z_{rm lowz})=0.485pm0.044$ and $f(z_{rm cmass})sigma_8(z_{rm cmass})=0.436pm0.022$ for the LOWZ and CMASS samples, respectively.
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature {Omega}_K =0.0003+/-0.0026 and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant ({Lambda}CDM). Our RSD measurements of f{sigma}_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat {Lambda}CDM we find {Omega}_m = 0.310+/-0.005 and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of 0.16 eV/c^2 on the neutrino mass sum.
We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV void finding algorithm to the galaxy catalog. We identify a total of 10,643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1,228 voids with effective radii spanning the range 20-100Mpc/h and with central densities that are, on average, 30% of the mean sample density. We relea