Do you want to publish a course? Click here

Further studies of isolated photon production with a jet in deep inelastic scattering at HERA

138   0   0.0 ( 0 )
 Added by Peter Bussey
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Isolated photons with high transverse energy have been studied in deep inelastic $ep$ scattering with the ZEUS detector at HERA, using an integrated luminosity of $326,$ pb$^{-1}$ in the range of exchanged-photon virtuality $10 - 350$ GeV$^2$. Outgoing isolated photons with transverse energy $4<E_T^gamma< 15$ GeV and pseudorapidity $-0.7 <eta^gamma< 0.9$ were measured with accompanying jets having transverse energy and pseudorapidity $2.5 <E_T^{jet}<35$ GeV and $-1.5<eta^{jet}< 1.8$, respectively. Differential cross sections are presented for the following variables: the fraction of the incoming photon energy and momentum that is transferred to the outgoing photon and the leading jet; the fraction of the incoming proton energy transferred to the photon and leading jet; the differences in azimuthal angle and pseudorapidity between the outgoing photon and the leading jet and between the outgoing photon and the scattered electron. Comparisons are made with theoretical predictions: a leading-logarithm Monte Carlo simulation, a next-to-leading-order QCD prediction, and a prediction using the $k_T$-factorisation approach.



rate research

Read More

101 - C. Glasman 2003
Recent results from jet production in deep inelastic ep scattering at HERA are reviewed. The values of alpha_s(M_z) extracted from a QCD analysis of the data are presented.
In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_gamma^{mathrm{meas}}$, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{gamma} < 15$ GeV and $-0.7 < eta^{gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{rm jet} < 35$ GeV and $-1.5 < eta^{rm jet} < 1.8$, for an integrated luminosity of 374 $mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.
A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80,{rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290,{rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15,000,{rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{rm jet}<7,{rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $alpha_s(M_Z)$ is determined in next-to-leading order.
Charm production in charged current deep inelastic scattering has been measured for the first time in $e^{pm}p$ collisions, using data collected with the ZEUS detector at HERA, corresponding to an integrated luminosity of $358 pb^{-1}$. Results are presented separately for $e^{+}p$ and $e^{-}p$ scattering at a centre-of-mass energy of $sqrt{s} = 318 GeV$ within a kinematic phase-space region of $200 GeV^{2}<Q^{2}<60000 GeV^{2}$ and $y<0.9$, where $Q^{2}$ is the squared four-momentum transfer and $y$ is the inelasticity. The measured cross sections of electroweak charm production are consistent with expectations from the Standard Model within the large statistical uncertainties.
Production of exclusive dijets in diffractive deep inelastic $e^pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $gamma^*-p$ centre-of-mass energies in the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $beta$ and $phi$, where $beta=x/x_{rm I!P}$, $x$ is the Bjorken variable and $x_{rm I!P}$ is the proton fractional longitudinal momentum loss. The angle $phi$ is defined by the $gamma^*-$dijet plane and the $gamma^*-e^pm$ plane in the rest frame of the diffractive final state. The $phi$ cross section is measured in bins of $beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا