Do you want to publish a course? Click here

Vandermonde determinantal ideals

80   0   0.0 ( 0 )
 Added by Kohji Yanagawa
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that the ideal generated by maximal minors (i.e., $(k+1)$-minors) of a $(k+1) times n$ Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all Specht polynomials with shape $(n-k,1,...,1)$.



rate research

Read More

Let I be either the ideal of maximal minors or the ideal of 2-minors of a row graded or column graded matrix of linear forms L. In two previous papers we showed that I is a Cartwright-Sturmfels ideal, that is, the multigraded generic initial ideal gin(I) of I is radical (and essentially independent of the term order chosen). In this paper we describe generators and prime decomposition of gin(I) in terms of data related to the linear dependences among the row or columns of the submatrices of L. In the case of 2-minors we also give a closed formula for its multigraded Hilbert series.
We show that a determinantal ideal generated by $t$-minors does not contain any nonzero polynomials with $t!/2$ or fewer terms. Geometrically this means that any nonzero polynomial vanishing on all matrices of rank at most $t-1$ has more than $t!/2$ terms.
Given any equigenerated monomial ideal $I$ with the property that the defining ideal $J$ of the fiber cone $ F(I)$ of $I$ is generated by quadratic binomials, we introduce a matrix such that the set of its binomial $2$-minors is a generating set of $J$. In this way, we characterize the fiber cone of sortable and Freiman ideals.
198 - Aldo Conca , Volkmar Welker 2018
Motivated by questions in algebra and combinatorics we study two ideals associated to a simple graph G: --> the Lovasz-Saks-Schrijver ideal defining the d-dimensional orthogonal representations of the graph complementary to G and --> the determinantal ideal of the (d+1)-minors of a generic symmetric with 0s in positions prescribed by the graph G. In characteristic 0 these two ideals turns out to be closely related and algebraic properties such as being radical, prime or a complete intersection transfer from the Lovasz-Saks-Schrijver ideal to the determinantal ideal. For Lovasz-Saks-Schrijver ideals we link these properties to combinatorial properties of G and show that they always hold for d large enough. For specific classes of graph, such a forests, we can give a complete picture and classify the radical, prime and complete intersection Lovasz-Saks-Schrijver ideals.
142 - Anda Olteanu , Oana Olteanu , 2008
In this paper we characterize the componentwise lexsegment ideals which are componentwise linear and the lexsegment ideals generated in one degree which are Gotzmann.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا