Do you want to publish a course? Click here

Novel insights into charge and spin pairing instabilities in nanoclusters

198   0   0.0 ( 0 )
 Added by Armen Kocharian
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron pairing and ferromagnetism in various cluster geometries are studied with emphasis on tetrahedron and square pyramid under variation of interaction strength, electron doping and temperature. These exact calculations of charge and spin collective excitations and pseudogaps yield intriguing insights into level crossing degeneracies, phase separation and condensation. Criteria for spin-charge separation and reconciliation driven by interaction strength, next nearest coupling and temperature are found. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen recently in high T$_c$ cuprates, manganites and CMR nanomaterials.



rate research

Read More

The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clusters in the ground state and finite temperatures reveal intriguing insights into the nascent charge and spin pairings, Bose condensation and ferromagnetism in nanoclusters. The phase diagram off half filling strongly suggests the existence of subsequent transitions from electron pairing into unsaturated and saturated ferromagnetic Mott-Hubbard like insulators, driven by electron repulsion. Rigorous criteria for the existence of quantum critical points in the ground state and corresponding crossovers at finite temperatures are formulated. The phase diagram for 2x4-site clusters illustrates how these features are scaled with cluster size. The phase separation and electron pairing, monitored by a magnetic field and electron doping, surprisingly resemble phase diagrams in the family of doped high Tc cuprates.
Exact calculations of collective excitations and charge/spin (pseudo)gaps in an ensemble of bipartite and nonbipartite clusters yield level crossing degeneracies, spin-charge separation, condensation and recombination of electron charge and spin, driven by interaction strength, inter-site couplings and temperature. Near crossing degeneracies, the electron configurations of the lowest energies control the physics of electronic pairing, phase separation and magnetic transitions. Rigorous conditions are found for the smooth and dramatic phase transitions with competing stable and unstable inhomogeneities. Condensation of electron charge and spin degrees at various temperatures offers a new mechanism of pairing and a possible route to superconductivity in inhomogeneous systems, different from the BCS scenario. Small bipartite and frustrated clusters exhibit charge and spin inhomogeneities in many respects typical for nano and heterostructured materials. The calculated phase diagrams in various geometries may be linked to atomic scale experiments in high T$_c$ cuprates, manganites and other concentrated transition metal oxides.
Spontaneous phase separation instabilities with the formation of various types of charge and spin pairing (pseudo)gaps in $U>0$ Hubbard model including the {it next nearest neighbor coupling} are calculated with the emphasis on the two-dimensional (square) lattices generated by 8- and 10-site Betts unit cells. The exact theory yields insights into the nature of quantum critical points, continuous transitions, dramatic phase separation instabilities and electron condensation in spatially inhomogeneous systems. The picture of coupled anti-parallel (singlet) spins and paired charged holes suggests full Bose condensation and coherent pairing in real space at zero temperature of electrons complied with the Bose-Einstein statistics. Separate pairing of charge and spin degrees at distinct condensation temperatures offers a new route to superconductivity different from the BCS scenario. The conditions for spin liquid behavior coexisting with unsaturated and saturated Nagaoka ferromagnetism due to spin-charge separation are established. The phase separation critical points and classical criticality found at zero and finite temperatures resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen near optimally doped high-$T_c$ cuprates, pnictides and CMR nanomaterials.
Motivated by recent experimental progress on iron-based ladder compounds, we study the doped two-orbital Hubbard model for the two-leg ladder BaFe$_2$S$_3$. The model is constructed by using {it ab initio} hopping parameters and the ground state properties are investigated using the density matrix renormalization group method. We show that the $(pi,0)$ magnetic ordering at half-filling, with ferromagnetic rungs and antiferromagnetic legs, becomes incommensurate upon hole doping. Moreover, depending on the strength of the Hubbard $U$ coupling, other magnetic patterns, such as $(0,pi)$, are also stabilized. We found that the binding energy for two holes becomes negative for intermediate Hubbard interaction strength, indicating hole pairing. Due to the crystal-field split among orbitals, the holes primarily reside in one orbital, with the other one remaining half-filled. This resembles orbital selective Mott states. The formation of tight hole pairs continues with increasing hole density, as long as the magnetic order remains antiferromagnetic in one direction. The study of pair-pair correlations indicates the dominance of the intra-orbital spin-singlet channel, as opposed to other pairing channels. Although in a range of hole doping pairing correlations decay slowly, our results can also be interpreted as corresponding to a charge-density-wave made of pairs, a precursor of eventual superconductivity after interladder couplings are included. Such scenario of intertwined orders has been extensively discussed before in the cuprates, and our results suggest a similar physics could exist in ladder iron-based superconductors. Finally, we also show that a robust Hunds coupling is needed for pairing to occur.
There is growing evidence that the unconventional spatial inhomogeneities in the doped high-Tc superconductors are accompanied by the pairing of electrons, subsequent quantum phase transitions (QPTs), and condensation in coherent states. We show that these superconducting states can be obtained from phase separation instabilities near the quantum critical points. We examine electron coherent and incoherent pairing instabilities using our results on exact diagonalization in pyramidal and octahedron Hubbard-like clusters under variation of chemical potential (or doping), interaction strength, temperature and magnetic field. We also evaluate the behavior of the energy gap in the vicinity of its sign change as a function of out-of-plane position of the apical oxygen atom, due to vibration of apical atom and variation of inter-site coupling. These results provide a simple microscopic explanation of (correlation induced) supermodulation of the coherent pairing gap observed recently in the scanning tunneling microscopy experiments at atomic scale in $Bi_2Sr_2CaCu_2O_{8+delta}$. The existence of possible modulation of local charge density distribution in these materials is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا