Do you want to publish a course? Click here

IDIoT: Securing the Internet of Things like its 1994

275   0   0.0 ( 0 )
 Added by David Barrera
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Over 20 billion Internet of Things devices are set to come online by 2020. Protecting such a large number of underpowered, UI-less, network-connected devices will require a new security paradigm. We argue that solutions dependent on vendor cooperation such as secure coding and platform changes are unlikely to provide adequate defenses for the majority of devices. Similarly, regulation approaches face a number implementation challenges which limit their effectiveness. As part of the new paradigm, we propose IDIoT, a network security policy enforcement framework for IoT devices. IDIoT prevents widespread network attacks by restricting IoT devices to only their necessary network behavior. IDIoT is simple and effective, building on decades of tried-and-true network security principles without requiring changes to the devices or cloud infrastructure.



rate research

Read More

The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered.
This paper analyses the various authentication systems implemented for enhanced security and private re-position of an individuals log-in credentials. The first part of the paper describes the multi-factor authentication (MFA) systems, which, though not applicable to the field of Internet of Things, provides great security to a users credentials. MFA is followed by a brief description of the working mechanism of interaction of third party clients with private resources over the OAuth protocol framework and a study of the delegation based authentication system in IP-based IoT.
146 - Hiroshi Watanabe 2018
In the Internet-of-Things, the number of connected devices is expected to be extremely huge, i.e., more than a couple of ten billion. It is however well-known that the security for the Internet-of-Things is still open problem. In particular, it is difficult to certify the identification of connected devices and to prevent the illegal spoofing. It is because the conventional security technologies have advanced for mainly protecting logical network and not for physical network like the Internet-of-Things. In order to protect the Internet-of-Things with advanced security technologies, we propose a new concept (datachain layer) which is a well-designed combination of physical chip identification and blockchain. With a proposed solution of the physical chip identification, the physical addresses of connected devices are uniquely connected to the logical addresses to be protected by blockchain.
Internet of Things (IoT) based applications face an increasing number of potential security risks, which need to be systematically assessed and addressed. Expert-based manual assessment of IoT security is a predominant approach, which is usually inefficient. To address this problem, we propose an automated security assessment framework for IoT networks. Our framework first leverages machine learning and natural language processing to analyze vulnerability descriptions for predicting vulnerability metrics. The predicted metrics are then input into a two-layered graphical security model, which consists of an attack graph at the upper layer to present the network connectivity and an attack tree for each node in the network at the bottom layer to depict the vulnerability information. This security model automatically assesses the security of the IoT network by capturing potential attack paths. We evaluate the viability of our approach using a proof-of-concept smart building system model which contains a variety of real-world IoT devices and potential vulnerabilities. Our evaluation of the proposed framework demonstrates its effectiveness in terms of automatically predicting the vulnerability metrics of new vulnerabilities with more than 90% accuracy, on average, and identifying the most vulnerable attack paths within an IoT network. The produced assessment results can serve as a guideline for cybersecurity professionals to take further actions and mitigate risks in a timely manner.
167 - Udit Gupta 2015
Ever since the advent of computing, managing data has been of extreme importance. With innumerable devices getting added to network infrastructure, there has been a proportionate increase in the data which needs to be stored. With the advent of Internet of Things (IOT) it is anticipated that billions of devices will be a part of the internet in another decade. Since those devices will be communicating with each other on a regular basis with little or no human intervention, plethora of real time data will be generated in quick time which will result in large number of log files. Apart from complexity pertaining to storage, it will be mandatory to maintain confidentiality and integrity of these logs in IOT enabled devices. This paper will provide a brief overview about how logs can be efficiently and securely stored in IOT devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا