Do you want to publish a course? Click here

Superconducting and normal-state anisotropy of the doped topological insulator Sr$_{0.1}$Bi$_2$Se$_3$

62   0   0.0 ( 0 )
 Added by Matthew Smylie
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sr$_x$Bi$_2$Se$_3$ and the related compounds Cu$_x$Bi$_2$Se$_3$ and Nb$_x$Bi$_2$Se$_3$ have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T$_c$ ~ 3 K in Sr$_x$Bi$_2$Se$_3$ arises upon intercalation of Sr into the layered topological insulator Bi$_2$Se$_3$. Here we elucidate the anisotropy of the normal and superconducting state of Sr$_{0.1}$Bi$_2$Se$_3$ with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr$_{0.1}$Bi$_2$Se$_3$ are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of $E_u$ symmetry in Sr$_x$Bi$_2$Se$_3$.



rate research

Read More

A state of matter with a multi-component order parameter can give rise to vestigial order. In the vestigial phase, the primary order is only partially melted, leaving a remaining symmetry breaking behind, an effect driven by strong classical or quantum fluctuations. Vestigial states due to primary spin and charge-density-wave order have been discussed in the context of iron-based and cuprate materials. Here we present the observation of a partially melted superconductor in which pairing fluctuations condense at a separate phase transition and form a nematic state with broken Z3, i.e. three-state Potts-model symmetry. High-resolution thermal expansion, specific heat and magnetization measurements of the doped topological insulator NbxBi2Se3 reveal that this symmetry breaking occurs at Tnem=3.8 K above Tc=3.25 K, along with an onset of superconducting fluctuations. Thus, before Cooper pairs establish long-range coherence at Tc, they fluctuate in a way that breaks the rotational invariance at Tnem and induces a distortion of the crystalline lattice. Similar results are found for CuxBi2Se3.
Spontaneous rotational-symmetry breaking in the superconducting state of doped $mathrm{Bi}_2mathrm{Se}_3$ has attracted significant attention as an indicator for topological superconductivity. In this paper, high-resolution calorimetry of the single-crystal $mathrm{Sr}_{0.1}mathrm{Bi}_2mathrm{Se}_3$ provides unequivocal evidence of a two-fold rotational symmetry in the superconducting gap by a emph{bulk thermodynamic} probe, a fingerprint of nematic superconductivity. The extremely small specific heat anomaly resolved with our high-sensitivity technique is consistent with the materials low carrier concentration proving bulk superconductivity. The large basal-plane anisotropy of $H_{c2}$ is attributed to a nematic phase of a two-component topological gap structure $vec{eta} = (eta_{1}, eta_{2})$ and caused by a symmetry-breaking energy term $delta (|eta_{1}|^{2} - |eta_{2}|^{2}) T_{c}$. A quantitative analysis of our data excludes more conventional sources of this two-fold anisotropy and provides the first estimate for the symmetry-breaking strength $delta approx 0.1$, a value that points to an onset transition of the second order parameter component below 2K.
133 - T. V. Bay , T. Naka , Y. K. Huang 2011
We report a high-pressure single crystal study of the topological superconductor Cu$_x$Bi$_2$Se$_3$. Resistivity measurements under pressure show superconductivity is depressed smoothly. At the same time the metallic behavior is gradually lost. The upper critical field data $B_{c2}(T)$ under pressure collapse onto a universal curve. The absence of Pauli limiting and the comparison of $B_{c2}(T)$ to a polar state function point to spin-triplet superconductivity, but an anisotropic spin-singlet state cannot be discarded completely.
105 - M. P. Smylie , K. Willa , H. Claus 2017
We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological superconductor Nb$_x$Bi$_2$Se$_3$ (x = 0.25) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature $T_c$ decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth $Deltalambda(T)$ follows a power law ($Deltalambda(T)sim T^2$) indicating the presence of symmetry-protected point nodes. Our results are consistent with the proposed robust nematic $E_u$ pairing state in this material.
Superconductivity mediated by phonons is typically conventional, exhibiting a momentum-independent s-wave pairing function, due to the isotropic interactions between electrons and phonons along different crystalline directions. Here, by performing inelastic neutron scattering measurements on a superconducting single crystal of Sr0.1Bi2Se3, a prime candidate for realizing topological superconductivity by doping the topological insulator Bi2Se3, we find that there exist highly anisotropic phonons, with the linewidths of the acoustic phonons increasing substantially at long wavelengths, but only for those along the [001] direction. This observation indicates a large and singular electron-phonon coupling at small momenta, which we propose to give rise to the exotic p-wave nematic superconducting pairing in the MxBi2Se3 (M = Cu, Sr, Nb) superconductor family. Therefore, we show these superconductors to be example systems where electron-phonon interaction can induce more exotic superconducting pairing than the s-wave, consistent with the topological superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا