Do you want to publish a course? Click here

Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC Telescopes

190   0   0.0 ( 0 )
 Added by Paola Giammaria
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E$gtrsim$50GeV) in search for signatures of dark matter annihilation in the wide mass range between $sim$100 GeV and $sim$100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored dark matter models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.



rate research

Read More

We present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 hours of good-quality data taken between August 2016 and August 2017. We find no gamma-ray excess in the direction of Triangulum II, and upper limits on both the differential and integral gamma-ray flux are presented. Currently, the kinematics of Triangulum II are affected by large uncertainties leading to a bias in the determination of the properties of its dark matter halo. Using a scaling relation between the annihilation J-factor and heliocentric distance of well-known dwarf spheroidal galaxies, we estimate an annihilation J-factor for Triangulum II for WIMP dark matter of $log[J_{text{ann}}({0.5^{circ}})/$ GeV$^{2}$ cm$^{-5}] = 19.35 pm 0.37$. We also derive a dark matter density profile for the object relying on results from resolved simulations of Milky Way sized dark matter halos. We obtain 95% confidence-level limits on the thermally averaged annihilation cross section for WIMP annihilation into various Standard Model channels. The most stringent limits are obtained in the $tau^{+}tau^{-}$ final state, where a cross section for annihilation down to $langle sigma_{text{ann}} v rangle = 3.05 times 10^{-24}$ cm$^{3}$ s$^{-1}$ is excluded.
We report the results of the observation of the nearby satellite galaxy Segue 1 performed by the MAGIC-I ground-based gamma-ray telescope between November 2008 and March 2009 for a total of 43.2 hours. No significant gamma-ray emission was found above the background. Differential upper limits on the gamma-ray flux are derived assuming various power-law slopes for the possible emission spectrum. Integral upper limits are also calculated for several power-law spectra and for different energy thresholds. The values are of the order of 10^{-11} ph cm^{-2}$ s^{-1} above 100 GeV and 10^{-12} ph cm^{-2} s^{-1} above 200 GeV. Segue 1 is currently considered one of the most interesting targets for indirect dark matter searches. In these terms, the upper limits have been also interpreted in the context of annihilating dark matter particles. For such purpose, we performed a grid scan over a reasonable portion of the parameter space for the minimal SuperGravity model and computed the flux upper limit for each point separately, taking fully into account the peculiar spectral features of each model. We found that in order to match the experimental upper limits with the model predictions, a minimum flux boost of 10^{3} is required, and that the upper limits are quite dependent on the shape of the gamma-ray energy spectrum predicted by each specific model. Finally we compared the upper limits with the predictions of some dark matter models able to explain the PAMELA rise in the positron ratio, finding that Segue 1 data are in tension with the dark matter explanation of the PAMELA spectrum in the case of a dark matter candidate annihilating into tau+tau-. A complete exclusion however is not possible due to the uncertainties in the Segue 1 astrophysical factor.
The recently discovered object Triangulum II appears to be an ultra faint dwarf spheroidal galaxy which may be one of the most dark matter dominated objects yet known. In this work we try to estimate the potential of this object for studies of the indirect detection of self-annihilating dark matter by obtaining its astrophysical J-factor. We perform a basic estimate of the velocity gradient to look for signs of the halo being tidally disrupted but show that the observed value is statistically compatible with zero velocity gradient. We solve the spherical Jeans equation using Markov Chain Monte Carlo (MCMC) engine GreAT and the Jeans analysis part of the CLUMPY package. We find the results point towards a very large J-factor, appearing to make Triangulum II one of the best targets in the search for dark matter. However we stress that the very small number of line of sight velocities currently available for this object make follow up studies essential.
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC5813 and NGC5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for IACTs [ABRIDGED]
In the indirect dark matter (DM) detection framework, the DM particles would produce some signals by self-annihilating and creating standard model products such as gamma rays, which might be detected by ground-based telescopes. Dwarf irregular galaxies represent promising targets for the search for DM as they are assumed to be dark matter dominated systems at all radii. These dwarf irregular galaxies are rotationally supported with relatively simple kinematics which lead to small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. telescopes observed the irregular dwarf galaxy Wolf-Lundmark-Melotte (WLM) for a live time of 19 hours. These observations are the very first ones made by an imaging atmospheric Cherenkov telescope toward this kind of object. We search for a DM signal looking for an excess of gamma rays over the background in the direction of the WLM galaxy. We present the first results obtained on the velocity weighted cross section for DM self-annihilation as a function of DM particle mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا