Do you want to publish a course? Click here

Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope

123   0   0.0 ( 0 )
 Added by Michele Doro Dr.
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of the observation of the nearby satellite galaxy Segue 1 performed by the MAGIC-I ground-based gamma-ray telescope between November 2008 and March 2009 for a total of 43.2 hours. No significant gamma-ray emission was found above the background. Differential upper limits on the gamma-ray flux are derived assuming various power-law slopes for the possible emission spectrum. Integral upper limits are also calculated for several power-law spectra and for different energy thresholds. The values are of the order of 10^{-11} ph cm^{-2}$ s^{-1} above 100 GeV and 10^{-12} ph cm^{-2} s^{-1} above 200 GeV. Segue 1 is currently considered one of the most interesting targets for indirect dark matter searches. In these terms, the upper limits have been also interpreted in the context of annihilating dark matter particles. For such purpose, we performed a grid scan over a reasonable portion of the parameter space for the minimal SuperGravity model and computed the flux upper limit for each point separately, taking fully into account the peculiar spectral features of each model. We found that in order to match the experimental upper limits with the model predictions, a minimum flux boost of 10^{3} is required, and that the upper limits are quite dependent on the shape of the gamma-ray energy spectrum predicted by each specific model. Finally we compared the upper limits with the predictions of some dark matter models able to explain the PAMELA rise in the positron ratio, finding that Segue 1 data are in tension with the dark matter explanation of the PAMELA spectrum in the case of a dark matter candidate annihilating into tau+tau-. A complete exclusion however is not possible due to the uncertainties in the Segue 1 astrophysical factor.



rate research

Read More

The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E$gtrsim$50GeV) in search for signatures of dark matter annihilation in the wide mass range between $sim$100 GeV and $sim$100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored dark matter models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.
425 - J. Aleksic 2013
We present the results of stereoscopic observations of the satellite galaxy Segue 1 with the MAGIC Telescopes, carried out between 2011 and 2013. With almost 160 hours of good-quality data, this is the deepest observational campaign on any dwarf galaxy performed so far in the very high energy range of the electromagnetic spectrum. We search this large data sample for signals of dark matter particles in the mass range between 100 GeV and 20 TeV. For this we use the full likelihood analysis method, which provides optimal sensitivity to characteristic gamma-ray spectral features, like those expected from dark matter annihilation or decay. In particular, we focus our search on gamma-rays produced from different final state Standard Model particles, annihilation with internal bremsstrahlung, monochromatic lines and box-shaped signals. Our results represent the most stringent constraints to the annihilation cross-section or decay lifetime obtained from observations of satellite galaxies, for masses above few hundred GeV. In particular, our strongest limit (95% confidence level) corresponds to a ~500 GeV dark matter particle annihilating into tau+tau-, and is of order <sigma v> ~ 1.2x10^{-24} cm^3 s^{-1} - a factor ~40 above the <sigma v> thermal value.
In many Dark Matter (DM) scenarios, the annihilation of DM particles can produce gamma rays with a continuum spectrum that extends up to very high energies of the order of the electroweak symmetry breaking scale (hundreds of GeV). Astrophysical structures supposed to be dynamically dominated by DM, such as dwarf Spheroidal Galaxies, Galaxy Clusters (the largest ones in the local Universe being mostly observable from the northern hemisphere) and Intermediate Mass Black Holes, can be considered as interesting targets to look for DM annihilation with Imaging Atmospheric Cherenkov Telescopes (IACTs). Instead, the center of our Galaxy seems to be strongly contaminated with astrophysical sources. The 17m Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC-I) Telescope, situated in the Canary island of La Palma (2200 m a.s.l.), is best suited for DM searches, due to its unique combination of high sensitivity and low energy threshold among current IACTs which can potentially allow to provide clues on the high energy end, and possibly peak, of the gamma-ray DM-induced spectrum constrained at lower energies with the Fermi Space Telescope. The recent results achieved by MAGIC-I for some of the best candidates, as well as the DM detection prospects for the MAGIC Phase II, are reported.
We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. five-telescope array observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels as well as the prompt gamma-gamma emission. For the $tau^+tau^-$ channel the limits reach a $langle sigma v rangle$ value of about $4times 10^{-22}$ cm3s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma-gamma channel, the upper limit reaches a $langle sigma v rangle$ value of about $5 times10^{-24}$ cm3s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200 with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and $90%$ C.L. upper limits on the neutrino flux, the spin--dependent and spin--independent WIMP-nucleon cross--sections are derived for WIMP masses ranging from $ rm 50$ GeV to $rm 5$ TeV for the annihilation channels $rm WIMP + WIMP to b bar b, W^+ W^-$ and $rm tau^+ tau^-$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا