Do you want to publish a course? Click here

A Dark Matter Search with MALBEK

97   0   0.0 ( 0 )
 Added by Graham Giovanetti
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The MAJORANA DEMONSTRATOR is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76-Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the MAJORANA research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal.



rate research

Read More

86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
Existence of dark matter indicates the presence of unknown fundamental laws of nature. Ultralight axion-like particles are well-motivated dark matter candidates, emerging naturally from theories of physics at ultrahigh energies. We report the results of a direct search for the electromagnetic interaction of axion-like dark matter in the mass range that spans three decades from 12 peV to 12 neV. The detection scheme is based on a modification of Maxwells equations in the presence of axion-like dark matter, which mixes with a static magnetic field to produce an oscillating magnetic field. The experiment makes use of toroidal magnets with iron-nickel alloy ferromagnetic powder cores, which enhance the static magnetic field by a factor of 24. Using SQUIDs, we achieve a magnetic sensitivity of 150 $text{aT}/sqrt{text{Hz}}$, at the level of the most sensitive magnetic field measurements demonstrated with any broadband sensor. We recorded 41 hours of data and improved the best limits on the magnitude of the axion-like dark matter electromagnetic coupling constant over part of our mass range, at 20 peV reaching $4.0 times 10^{-11} text{GeV}^{-1}$ (95% confidence level). Our measurements are starting to explore the coupling strengths and masses of axion-like particles where mixing with photons could explain the anomalous transparency of the universe to TeV gamma-rays.
306 - H.S. Lee , H. Bhang , J.H. Choi 2014
We present a search for low-mass ($leq 20 GeV/c^{2}$) weakly interacting massive particles(WIMPs), strong candidates of dark matter particles,using the low-background CsI(Tl) detector array of the Korea Invisible Mass Search (KIMS) experiment. With a total data exposure of 24,324.3kg$cdot$days,we search for WIMP interaction signals produced by nuclei recoiling from WIMP-nuclear elastic scattering with visible energies between 2 and 4keV. The observed energy distribution of candidate events is consistent with null signals, and upper limits of the WIMP-proton spin-independent interaction are set with a 90% confidence level. The observed limit rejects most of the low mass region of parameter space favored by the DAMA annual modulation signal.
We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.
We search for hidden-photon cold dark matter (HP-CDM) using a spectroscopic system in a K-band frequency range. Our system comprises a planar metal plate and cryogenic receiver. This is the first time a cryogenic receiver has been used in the search for HP-CDM. Such use helps reduce thermal noise. We recorded data for 9.3 hours using an effective aperture area of 14.8 cm$^2$. No signal was found in the data. We set upper limits for the parameter of mixing between the photon and HP-CDM in the mass range from 115.79 to 115.85 $mu$eV, $chi < 1.8$-$4.3 times 10^{-10}$, at a 95% confidence level. This is the most stringent upper limit obtained to date in the considered mass range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا