Do you want to publish a course? Click here

Variance and Volatility Swaps and Futures Pricing for Stochastic Volatility Models

80   0   0.0 ( 0 )
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this chapter, we consider volatility swap, variance swap and VIX future pricing under different stochastic volatility models and jump diffusion models which are commonly used in financial market. We use convexity correction approximation technique and Laplace transform method to evaluate volatility strikes and estimate VIX future prices. In empirical study, we use Markov chain Monte Carlo algorithm for model calibration based on S&P 500 historical data, evaluate the effect of adding jumps into asset price processes on volatility derivatives pricing, and compare the performance of different pricing approaches.



rate research

Read More

In this paper, a pricing formula for volatility swaps is delivered when the underlying asset follows the stochastic volatility model with jumps and stochastic intensity. By using Feynman-Kac theorem, a partial integral differential equation is obtained to derive the joint moment generating function of the previous model. Moreover, discrete and continuous sampled volatility swap pricing formulas are given by employing transform techniques and the relationship between two pricing formulas is discussed. Finally, some numerical simulations are reported to support the results presented in this paper.
We consider stochastic volatility models under parameter uncertainty and investigate how model derived prices of European options are affected. We let the pricing parameters evolve dynamically in time within a specified region, and formalise the problem as a control problem where the control acts on the parameters to maximise/minimise the option value. Through a dual representation with backward stochastic differential equations, we obtain explicit equations for Hestons model and investigate several numerical solutions thereof. In an empirical study, we apply our results to market data from the S&P 500 index where the model is estimated to historical asset prices. We find that the conservative model-prices cover 98% of the considered market-prices for a set of European call options.
This paper focuses on the pricing of the variance swap in an incomplete market where the stochastic interest rate and the price of the stock are respectively driven by Cox-Ingersoll-Ross model and Heston model with simultaneous L{e}vy jumps. By using the equilibrium framework, we obtain the pricing kernel and the equivalent martingale measure. Moreover, under the forward measure instead of the risk neural measure, we give the closed-form solution for the fair delivery price of the discretely sampled variance swap by employing the joint moment generating function of the underlying processes. Finally, we provide some numerical examples to depict that the values of variance swaps not only depend on the stochastic interest rates but also increase in the presence of jump risks.
We consider closed-form approximations for European put option prices within the Heston and GARCH diffusion stochastic volatility models with time-dependent parameters. Our methodology involves writing the put option price as an expectation of a Black-Scholes formula and performing a second-order Taylor expansion around the mean of its argument. The difficulties then faced are simplifying a number of expectations induced by the Taylor expansion. Under the assumption of piecewise-constant parameters, we derive closed-form pricing formulas and devise a fast calibration scheme. Furthermore, we perform a numerical error and sensitivity analysis to investigate the quality of our approximation and show that the errors are well within the acceptable range for application purposes. Lastly, we derive bounds on the remainder term generated by the Taylor expansion.
Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا