Do you want to publish a course? Click here

Option Pricing under Fast-varying and Rough Stochastic Volatility

158   0   0.0 ( 0 )
 Added by Knut Solna
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.



rate research

Read More

In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been successfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
We consider the problem of option pricing under stochastic volatility models, focusing on the linear approximation of the two processes known as exponential Ornstein-Uhlenbeck and Stein-Stein. Indeed, we show they admit the same limit dynamics in the regime of low fluctuations of the volatility process, under which we derive the exact expression of the characteristic function associated to the risk neutral probability density. This expression allows us to compute option prices exploiting a formula derived by Lewis and Lipton. We analyze in detail the case of Plain Vanilla calls, being liquid instruments for which reliable implied volatility surfaces are available. We also compute the analytical expressions of the first four cumulants, that are crucial to implement a simple two steps calibration procedure. It has been tested against a data set of options traded on the Milan Stock Exchange. The data analysis that we present reveals a good fit with the market implied surfaces and corroborates the accuracy of the linear approximation.
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationally efficient method for obtaining the probability distribution of average integrated variance (AIV), which is key to option pricing under stochastic-volatility-type models. Building upon the efficiency of the European option pricing approach, we are able to price an American-style option, by converting its pricing into the pricing of a portfolio of European options. Our work also provides constructive guidance for analyzing derivatives based on variance, e.g., the variance swap. Numerical results indicate our methods can be implemented very efficiently and accurately.
The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.
We consider stochastic volatility models under parameter uncertainty and investigate how model derived prices of European options are affected. We let the pricing parameters evolve dynamically in time within a specified region, and formalise the problem as a control problem where the control acts on the parameters to maximise/minimise the option value. Through a dual representation with backward stochastic differential equations, we obtain explicit equations for Hestons model and investigate several numerical solutions thereof. In an empirical study, we apply our results to market data from the S&P 500 index where the model is estimated to historical asset prices. We find that the conservative model-prices cover 98% of the considered market-prices for a set of European call options.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا