Do you want to publish a course? Click here

Asymptotic coverage probabilities of bootstrap percentile confidence intervals for constrained parameters

103   0   0.0 ( 0 )
 Added by Chunlin Wang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The asymptotic behaviour of the commonly used bootstrap percentile confidence interval is investigated when the parameters are subject to linear inequality constraints. We concentrate on the important one- and two-sample problems with data generated from general parametric distributions in the natural exponential family. The focus of this paper is on quantifying the coverage probabilities of the parametric bootstrap percentile confidence intervals, in particular their limiting behaviour near boundaries. We propose a local asymptotic framework to study this subtle coverage behaviour. Under this framework, we discover that when the true parameters are on, or close to, the restriction boundary, the asymptotic coverage probabilities can always exceed the nominal level in the one-sample case; however, they can be, remarkably, both under and over the nominal level in the two-sample case. Using illustrative examples, we show that the results provide theoretical justification and guidance on applying the bootstrap percentile method to constrained inference problems.



rate research

Read More

We compare the following two sources of poor coverage of post-model-selection confidence intervals: the preliminary data-based model selection sometimes chooses the wrong model and the data used to choose the model is re-used for the construction of the confidence interval.
Recently, Kabaila and Wijethunga assessed the performance of a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efrons delta method approximation to the standard deviation of this estimator. They used a testbed situation consisting of two nested linear regression models, with error variance assumed known, and model selection using a preliminary hypothesis test. This assessment was in terms of coverage and scaled expected length, where the scaling is with respect to the expected length of the usual confidence interval with the same minimum coverage probability. They found that this confidence interval has scaled expected length that (a) has a maximum value that may be much greater than 1 and (b) is greater than a number slightly less than 1 when the simpler model is correct. We therefore ask the following question. For a confidence interval, centred on the bootstrap smoothed estimator, does there exist a formula for its data-based width such that, in this testbed situation, it has the desired minimum coverage and scaled expected length that (a) has a maximum value that is not too much larger than 1 and (b) is substantially less than 1 when the simpler model is correct? Using a recent decision-theoretic performance bound due to Kabaila and Kong, it is shown that the answer to this question is `no for a wide range of scenarios.
It can be argued that optimal prediction should take into account all available data. Therefore, to evaluate a prediction intervals performance one should employ conditional coverage probability, conditioning on all available observations. Focusing on a linear model, we derive the asymptotic distribution of the difference between the conditional coverage probability of a nominal prediction interval and the conditional coverage probability of a prediction interval obtained via a residual-based bootstrap. Applying this result, we show that a prediction interval generated by the residual-based bootstrap has approximately 50% probability to yield conditional under-coverage. We then develop a new bootstrap algorithm that generates a prediction interval that asymptotically controls both the conditional coverage probability as well as the possibility of conditional under-coverage. We complement the asymptotic results with several finite-sample simulations.
We consider a linear regression model, with the parameter of interest a specified linear combination of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizing AIC) is used to select a model. It is common statistical practice to then construct a confidence interval for the parameter of interest based on the assumption that the selected model had been given to us a priori. This assumption is false and it can lead to a confidence interval with poor coverage properties. We provide an easily-computed finite sample upper bound (calculated by repeated numerical evaluation of a double integral) to the minimum coverage probability of this confidence interval. This bound applies for model selection by any of the following methods: minimum AIC, minimum BIC, maximum adjusted R-squared, minimum Mallows Cp and t-tests. The importance of this upper bound is that it delineates general categories of design matrices and model selection procedures for which this confidence interval has poor coverage properties. This upper bound is shown to be a finite sample analogue of an earlier large sample upper bound due to Kabaila and Leeb.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data-based model selection. The key result of Efron (2014) is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron (2014) proposed a confidence interval centered on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post-model-selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of confidence interval centered on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probablility, based on the full model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا