Do you want to publish a course? Click here

Polariton condensation in $S$- and $P$-flatbands in a two-dimensional Lieb lattice

95   0   0.0 ( 0 )
 Added by Sebastian Klembt
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the condensation of exciton-polaritons in a two-dimensional Lieb lattice of micropillars. We show selective polariton condensation into the flatbands formed by S and P$_{x;y}$ orbital modes of the micropillars under non-resonant laser excitation. The real space mode patterns of these condensates are accurately reproduced by the calculation of related Bloch modes of S- and P-flatbands. Our work emphasizes the potential of exciton-polariton lattices to emulate Hamiltonians of advanced potential landscapes. Furthermore, the obtained results provide a deeper inside into the physics of flatbands known mostly within the tight-binding limit.



rate research

Read More

We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from $S$ and $P_{x,y}$ photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our work shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom and interactions.
The specific topology of the line centered square lattice (known also as the Lieb lattice) induces remarkable spectral properties as the macroscopically degenerated zero energy flat band, the Dirac cone in the low energy spectrum, and the peculiar Hofstadter-type spectrum in magnetic field. We study here the properties of the finite Lieb lattice with periodic and vanishing boundary conditions. We find out the behavior of the flat band induced by disorder and external magnetic and electric fields. We show that in the confined Lieb plaquette threaded by a perpendicular magnetic flux there are edge states with nontrivial behavior. The specific class of twisted edge states, which have alternating chirality, are sensitive to disorder and do not support IQHE, but contribute to the longitudinal resistance. The symmetry of the transmittance matrix in the energy range where these states are located is revealed. The diamagnetic moments of the bulk and edge states in the Dirac-Landau domain, and also of the flat states in crossed magnetic and electric fields are shown.
70 - Nadav Landau 2020
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity threshold as a function of increased two-photon excitation power, coinciding with an interaction-induced blueshift and a narrowing of spectral linewidth, characteristic of the transition from a thermal distribution of lower polaritons to polariton condensation. Two-Photon Absorption (TPA) is evidenced in the quadratic dependence of the input-output curves below and above the threshold region. Second Harmonic Generation (SHG) is ruled out by both this threshold behavior and by scanning the pump photon energy and observing a lack of dependence of the LP emission peak energy. Our results pave the way towards realization of a polariton-based stimulated THz radiation source, stemming from the dipole-allowed transition from the Quantum Well (QW) 2p dark exciton state to the 1s-exciton-based LP ground state, as theoretically predicted in [A. V. Kavokin et al., Phys. Rev. Lett. 108, 197401 (2012)].
We study the coherence and density modulation of a non-equilibrium exciton-polariton condensate in a one-dimensional valley with disorder. By means of interferometric measurements we evidence a modulation of the first-order coherence function and we relate it to a disorder-induced modulation of the condensate density, that increases as the pump power is increased. The non-monotonous spatial coherence function is found to be the result of the strong non-equilibrium character of the one-dimensional system, in the presence of disorder.
We study the localization properties of the two-dimensional Lieb lattice and its extensions in the presence of disorder using transfer matrix method and finite-size scaling. We find that all states in the Lieb lattice and its extensions are localized for $W geq 1$. Clear differences in the localization properties between disordered flat band and disordered dispersive bands are identified. Our results complement previous experimental studies of clean photonic Lieb lattices and provide information about their stability with respect to disorder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا