Do you want to publish a course? Click here

3D non-Fermi liquid behavior from 1D quantum critical local moments

82   0   0.0 ( 0 )
 Added by Laura Classen
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb$_2$Pt$_2$Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.



rate research

Read More

293 - E. Svanidze , L. Liu , B. Frandsen 2014
A quantum critical point (QCP) occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid (NFL) behavior, manifested in the logarithmic divergence of the specific heat both in the ferro- and the paramagnetic states. Sc_{3.1}In displays critical scaling and NFL behavior in the ferromagnetic state, akin to what had been observed only in f-electron, local moment systems. With doping, critical scaling is observed close to the QCP, as the critical exponents, and delta, gamma and beta have weak composition dependence, with delta nearly twice, and beta almost half of their respective mean-field values. The unusually large paramagnetic moment mu_PM~1.3 mu_B/F.U. is nearly composition-independent. Evidence for strong spin fluctuations, accompanying the QCP at x_c = 0.035 +- 0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting $T_c$ enclosing the nematic quantum critical point. For temperatures above $T_c$, we see strikingly non-Fermi liquid behavior, including a nodal - anti nodal dichotomy reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low frequency optical conductivity, resulting in behavior consistent with bad metal phenomenology.
228 - L. Forro , R. Gaal , H. Berger 2000
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two kinds of anomalous conducting states. The high-pressure metallic phase is a non-Fermi liquid described by Delta rho = T^n where n=1.2-1.3 at 1K < T < 60K. At p<p_cr, the transition is preceded by a wide precursor region with critically increasing resistivity which we ascribe to the opening of a soft Coulomb gap.
249 - T. Senthil 2008
At certain quantum critical points in metals an entire Fermi surface may disappear. A crucial question is the nature of the electronic excitations at the critical point. Here we provide arguments showing that at such quantum critical points the Fermi surface remains sharply defined even though the Landau quasiparticle is absent. The presence of such a critical Fermi surface has a number of consequences for the universal phenomena near the quantum critical point which are discussed. In particular the structure of scaling of the universal critical singularities can be significantly modified from more familiar criticality. Scaling hypotheses appropriate to a critical fermi surface are proposed. Implications for experiments on heavy fermion critical points are discussed. Various phenomena in the normal state of the cuprates are also examined from this perspective. We suggest that a phase transition that involves a dramatic reconstruction of the Fermi surface might underlie a number of strange observations in the metallic states above the superconducting dome.
The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperature. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to omega^{-1/2}), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO_3 are substantially different from those of Fermi-liquid metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا