No Arabic abstract
A quantum critical point (QCP) occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid (NFL) behavior, manifested in the logarithmic divergence of the specific heat both in the ferro- and the paramagnetic states. Sc_{3.1}In displays critical scaling and NFL behavior in the ferromagnetic state, akin to what had been observed only in f-electron, local moment systems. With doping, critical scaling is observed close to the QCP, as the critical exponents, and delta, gamma and beta have weak composition dependence, with delta nearly twice, and beta almost half of their respective mean-field values. The unusually large paramagnetic moment mu_PM~1.3 mu_B/F.U. is nearly composition-independent. Evidence for strong spin fluctuations, accompanying the QCP at x_c = 0.035 +- 0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb$_2$Pt$_2$Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting $T_c$ enclosing the nematic quantum critical point. For temperatures above $T_c$, we see strikingly non-Fermi liquid behavior, including a nodal - anti nodal dichotomy reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low frequency optical conductivity, resulting in behavior consistent with bad metal phenomenology.
We construct a two-dimensional lattice model of fermions coupled to Ising ferromagnetic critical fluctuations. Using extensive sign-problem-free quantum Monte Carlo simulations, we show that the model realizes a continuous itinerant quantum phase transition. In comparison with other similar itinerant quantum critical points (QCPs), our QCP shows much weaker superconductivity tendency with no superconducting state down to the lowest temperature investigated, hence making the system a good platform for the exploration of quantum critical fluctuations. Remarkably, clear signatures of non-Fermi-liquid behavior in the fermion propagators are observed at the QCP. The critical fluctuations at the QCP partially resemble Hertz-Millis-Moriya behavior. However, careful scaling analysis reveals that the QCP belongs to a different universality class, deviating from both (2+1)d Ising and Hertz-Millis-Moriya predictions.
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two kinds of anomalous conducting states. The high-pressure metallic phase is a non-Fermi liquid described by Delta rho = T^n where n=1.2-1.3 at 1K < T < 60K. At p<p_cr, the transition is preceded by a wide precursor region with critically increasing resistivity which we ascribe to the opening of a soft Coulomb gap.
We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the cross-over between diffusive and ballistic regimes of quantum interference effects occurs at a temperature $ T^{ast}=1/tau gamma (E_{F}tau)^{2}$, where $gamma $ is the parameter associated with the Landau damping of the spin fluctuations, $tau $ is the impurity scattering time, and $E_{F}$ is the Fermi energy. For a generic choice of parameters, $T^{ast}$ is smaller than the nominal crossover scale $1/tau $. In the ballistic quantum critical regime, the conductivity behaves as $T^{1/3}$.